あぷらなーと


あぷらなーとの写真ブログ
by あぷらなーと
S M T W T F S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
あぷらなーと
「自然写真大好き」
HNあぷらなーと が

いろんな写真ネタを
のんびり語ります。

気合い入れすぎると
続かないので、
「ぼちぼち」いきます。

生息地:香川・徳島
カテゴリ
最新のコメント
> Gさん 安物断..
by supernova1987a at 00:21
> オヤジさん さ..
by supernova1987a at 00:17
> kem2017さん ..
by supernova1987a at 23:56
> にゃあさん 今..
by supernova1987a at 23:55
今年我が家の庭では蝉の鳴..
by G at 10:56
あぷらなーとさんの建築物..
by オヤジ at 10:47
既にクマゼミは圧倒的な戦..
by kem2017 at 09:49
温度と湿度管理大事なんで..
by にゃあ at 09:27
> にゃあさん ミ..
by supernova1987a at 21:55
> オヤジさん な..
by supernova1987a at 21:38
以前の記事
お気に入りブログ

タグ:画像処理 ( 40 ) タグの人気記事

D5000の天の川も再処理してみた

★GW中の唯一の遠征日だったので

モヤモヤした空でしたが、IR改造D5000+シグマ30mmF1.4で撮影した天の川も再処理してみました。
撮影データはISO1600F4の30秒露光で、スカイメモNSのノータッチガイドです。

今回は、キャプチャNXDでアストロノイズリダクションを掛けて現像したTIFF画像と、ステライメージでホットクール除去して現像したFITSファイルを最後に合成することと、ステライメージ7のマスク処理に加えて、新たに導入したフォトショップ+NikCollectionでのレタッチも施してみました。

ちなみに、撮影した画像は148コマ。せっかくですのでコンポジットの効果も比較してみることに。

★コンポジットの枚数による差異

コンポジット枚数による違いは次のとおり
f0346040_02425767.jpg
 ※左から順に、1コマ/2コマ/4コマ/8コマ/16コマ/32コマ/64コマ/128コマ
ビニングしたものをピクセル等倍にしていますので、一般的に言う「50%」に相当しますね。1コマは論外として、8枚コンポあたりから実用的に見えます。

さらに拡大してみます。
f0346040_02452661.jpg
 ※左から順に、1コマ/2コマ/4コマ/8コマ/16コマ/32コマ/64コマ/128コマ

ビニングしたものを300%拡大したものです。やはり8枚コンポあたりから滑らかになっています。

すこし別の場所も見てみます。

f0346040_02483229.jpg
 ※左から順に、1コマ/2コマ/4コマ/8コマ/16コマ/32コマ/64コマ/128コマ

ビニングしたものを300%拡大したものです。これだと16枚コンポあたりからが実用域でしょうか。


★NikCollectionで処理してみると

さきほどのコンポジット比較ですが、さらに強めの画像処理をした場合には状況が変わります。

f0346040_02522639.jpg
 ※左から順に、1コマ/16コマ/128コマ

これもビニングしたものを300%拡大したものです。強めの画像処理をかけると16枚コンポでもザラザラになることが分かりますね。


★というわけで結局・・・

手持ちの148コマを全て処理してみました。
ついに買ってしまったフォトショも使って仕上げます。
先日、単体でも動くことが判明したNikCollectionですが、やっぱりプラグインとして使うと格段に楽ちんですね(あたりまえか)。

ちなみに、元「キャプチャーNX2使い」だったあぷらなーととしては、NikCollectionで一番ありがたいのが「コントロールポイント」が使えることです。
キャプチャーNX-Dが無料化されたのは良いんですが、大好きなコントロールポイント機能が無くなったので困っていたわけです。



フラットは撮影していないので若干トリミングして周辺部を捨てましたが、なんとか仕上がりました。

f0346040_03455120.jpg

※148枚コンポジット 画像処理は、NX-D+SI7+SI6+シルキーピクス+フォトショ+NikCollectionで色々と♪

デジカメで天の川をガイド撮影したのは今回が初めてなので、『天の川ビギナー』にしては良い感じかな?

・・・肉眼で天の川がほとんど視認できないモヤモヤ条件ではなくて、スカッと晴れた空で再チャレンジしてみたいものです。

by supernova1987a | 2017-05-16 06:34 | 天体写真 | Comments(16)

天の川中心部再処理


★GW中唯一の『とりあえず』晴れた日に・・・

f0346040_03255377.jpg
久しぶりのスカイメモNSを投入して、D810A+85mmF1.4Dで撮った天の川中心部ですが、意外にも写りが良かったので残りのコマ(実は先日アップした画像は141コマのうち42コマしか処理していなかったので・・・)も頑張って画像処理してみた。

★ISO1600・F4・30秒露光の撮って出し
f0346040_03154316.jpg

★前回アップした42コマコンポジット
f0346040_03155584.jpg

★全コマコンポジット+マスク処理
f0346040_03160975.jpg
※141コマコンポジット+各種画像処理。(トリミング有り。)

ちなみに超秒時ノイズ除去やダーク減算やフラット補正やホットクール除去などは一切無しです。
ただしRAW現造時にキャプチャNX-Dでアストロノイズリダクションは掛けています。
また、D810Aはデータが恐ろしく『重い』のでNX-Dから吐き出した画像はTIFFではなくJPEG(笑)。
・・・実はまだフォトショの使い方に慣れていないので、画像処理はステライメージ+シルキーピクス。
よってレイヤー処理はしていないのだけれど、それでもマスク処理するだけで相当インパクトのある天の川になりました。

あのモヤモヤ空の短時間露光で、しかも適当に画像処理してこれだけ写るんだったら、肉眼で天の川がハッキリ見える空でタップリ露光して真面目に画像処理すれば一体どうなるんだろう??

うーむ。もう一度プチ遠征したい~。



by supernova1987a | 2017-05-10 06:55 | 天体写真 | Comments(10)

食わず嫌いの(?)カラフルタウン

★「みんな大好きカラフルタウン」とはいうものの

小学5年生のころから天体観測を初めてウン十年。
その間、何度か完全に天文から離れる時期もありましたが、3年前からまた天文に復帰。
しかし、まあここ10数年の間に天体写真も様変わりしました。フィルムメインから冷却CCDメインに移行した後、今はデジタル一眼全盛ですものね。(もちろん冷却CMOSも流行っていますが)

ところで、近年の天体写真で驚いたことが3つあります。

 A:惑星は動画で撮って大量スタック+レジスタックス
 B:星景写真は短時間露光+比較明コンポジット
 C:星雲の写真は『分子雲』の描写が人気

どれもフィルム時代には考えられなかった概念を用いて驚異的な絵を写し出す名手の方が大勢いらっしゃいます。
だからこそ、昔天文少年だったおっさんの心を熱くするのですが・・・・。

そんな中、私がまだ『手を出していない』(出せない)のがCでして、特にさそり座付近のいわゆる「カラフルタウン」と言われる領域は、赤・青・黄の星雲とモクモクと伸びる暗黒星雲(今風にいうと分子雲)が「ウソだろ!」というくらい鮮明に撮られた作品を目にしてしまうと、やる気と言うよりは「こんなん、どう頑張っても無理やん!」と諦めてしまいがちでした。

恐らく、機材の良し悪し以前に、透明度抜群の観測地への遠征体力と数時間におよぶ露光を行う根気と最新の画像処理技術をフル動員しないと写りそうにもないと感じられるからです。


★先日の(悪条件下での)プチ遠征では・・・

久々に持ち出したスカイメモNSにD810A+ニコン85mmF1.4Dを載っけて、「カラフルタウン」なるものの片鱗でも捉えられればと目論んでいたのですが、あいにく透明度が悪く、意気消沈
画像処理する気力もなく、30秒露光×60コマのデータが死蔵されつつありました。

だって、『撮って出し』だと、こんなん↓ですもん。どう考えても無理っぽい。

f0346040_13054578.jpg
 ※D810A+ニコン85mmF1.4D ISO1600・F4・30秒露光 スカイメモNSノータッチガイド


★あいにく天候が回復しそうにないので

GWの7連休は「最低でも5回は遠征して素材をザクザク撮ってくるぞ」と目論んでいたものの、その後天候が回復せず、やることが無いので、しぶしぶ「画像処理の練習」をしてみることにしました。


①先ほどの「撮って出し」をトーン修正してみます。
f0346040_13100378.jpg
 ※左:撮って出し 右:修正後

ああ、なるほどねぇ。
たしかに「カラフルタウン」らしき領域が見えますね。強引に炙り出したのでD810Aでもノイズボロボロですが。


②60コマの画像をコンポジットしてみます

f0346040_13134341.jpg
 ※左:1コマ画像 右:60コマコンポジット後

うんうん。ノイズは滑らかになりました。分子雲らしきモヤモヤも見えてきました。

・・・・と、ここまでは楽勝なのです。ステライメージ6.5なら恒星を位置合わせ基準にした加算平均コンポジットでもあっという間に完了ですので。また、レベル調整やデジタル現像も使い慣れているのでサクッと終わります。

ただ、これより先が未知の領域です。そもそもダークもフラットも撮ってませんし、「マスク処理」だって今までたった1度しか触ったことが無いんですよねぇ。しかし、『食わず嫌い』は良くないので・・・・


③マスク処理に一歩踏み込んでみます

f0346040_13220217.jpg
 左:マスク処理無し 右:マスク処理など諸々を実行後

この手の処理はど素人なので、正直、吐きそうなほど試行錯誤しました。①~②までの時間を1とすると③は20~30くらいかかりました(涙)。

周辺減光や周辺部の色むらが酷いことになっているので全体をお見せすることは出来ませんが、なるほど「マスク処理使わないと先に進めないわけだ」ということが納得できるくらいには「カラフルタウンらしきもの」が写せたと思います♪
たぶん、このあたりが今回の写真素材と現有の処理ツールの限界かなあ。これを超えるためには、「透明度の高い空」で「たっぷりと露光」して「レイヤー処理」に持ち込まないとダメなんでしょうねぇ。

しかし・・・これはまた先の長いお話だなぁ(ため息)


by supernova1987a | 2017-05-06 23:45 | 天体写真 | Comments(12)

回折限界を超えて「お花見」

★先日は、思い切り遠くから・・・

天候が悪いという理由で、先日はBORG89EDにASI1600MC+MMのビームスプリットシステムで「1km手前からお花見」した訳ですが・・・・

f0346040_23133957.jpeg
モノクロCMOSカメラとカラーCMOSカメラの同時露光によるLRGB合成で、遠距離とは思えない解像度を得ることができました。

★今度は逆に・・・

今回は、ニコンD810A+マイクロ60mmを使ったマクロ撮影で、天体写真の技法を応用して解像度を上げて遊んでみることにします♪

素材は昨年撮影した桜の花です。(正確にはオウトウですので、いわゆるサクランボの花ですね)
ニコンD810AにAF-Sマイクロ60mmF2.8 とマクロスピードライトを装着して日中シンクロ撮影してみると・・・

f0346040_06274876.jpeg
 ※ISO200 F40 1/250secシンクロ 2灯ライティング RAW 現像はシルキーピクス

こんな感じで「夜桜っぽい」絵が撮れました♪
(本来天体専用機のD810Aは、ノーマル機とくらべて『微妙な』赤色が出しやすいような気がします)

★マクロ撮影の敵は・・・

天体写真の最大の敵はシーイング(正確にはシンチレーション)と呼ばれる大気の揺らぎですね。そのせいでどんなに高性能な天体望遠鏡を用いてもぼやけてしまいます。それを軽減するためにスタッキング(コンポジット)とかマックスエントロピー法やウェーブレット法などのシャープ処理が使われます。

対して、マクロ撮影の最大の敵は、絞りを(被写界深度を稼ぐために)絞り込んだせいで発生する回折ボケです。絞りを開けば有効口径が大きくなるため理論上の解像度は向上するものの合焦範囲が浅くなるために画面全体にピントが来ません。かといって絞りすぎると光の回折による解像度低下で画面全体がベールをかぶったように眠くなってしまいます。

f0346040_06403677.jpeg
 ※上記の画像のピクセル等倍(ボケボケで、せっかくのD810Aの高画素が死んでます)

・・・よくよく考えると、天体撮影においてレジスタックスなどを用いたシャープ処理は、ある意味「解像度を補完する」(ように見せる)技法ですので、マクロ撮影における回折ボケにも有効なのではないか・・・と。

★・・・で、やってみた

 行った処理は概ね下記の通りです。

① D810Aで撮影したRAW画像をシルキーピクスで現像処理してTIFFに
② ステライメージで2×2ソフトウェアビニング処理
③ ②の画像をモノクロ化
④ ③の画像をレジスタックスに読み込みウェーブレット
⑤ ③の画像をステライメージで最大エントロピー画像復元
⑥ ④と⑤を加算平均コンポジット
⑦ ステライメージで軽くアンシャープマスク処理
⑧ ステライメージでスターシャープフィルタとホットクール除去を併用してノイズ除去
⑨ ステライメージでデジタル現像+レベル調整
⑩ ⑨の画像をL、③の画像をRGBとしてLRGB合成
⑪ Lab色彩調整、トーンカーブ調整などで味付け

さて、出来上がった画像を、
 A:ノーマル
 B:シルキーピクスのピュアディテール処理
 C:上記の処理によるLRGB画像
で比較してみましょう。

f0346040_06490739.jpeg
   ※左から 画像A、画像B、画像C

比較のため、できるだけ明るさとトーンは揃えたつもりです。
AよりもB、BよりもCがシャープに見えますね。

さらに拡大してみます。
f0346040_06523170.jpeg
   ※左から 画像A、画像B、画像C (ピクセル66%)

ピクセル66%といっても、ビニングしてますので大元の画像で言うところのピクセル0.33倍に相当しますが、画像Cは相当にシャープになっていることが分かります。細部が写り過ぎてて、ちと不気味な感じすらします。

★というわけで・・・

今回は、天体専用機と思われているD810Aに天体写真用の技法を用いてマクロ撮影するという「お遊び」でした。
マクロ撮影で回折ボケに悩んでいる天文マニアの方(いないか・・・?)は、お試しを。なかなか面白いですよぉ。

・・・・といいつつ実は、(画像Bの)「シルキーピクスによるピュアディテール処理」って、お手軽な割に結構「いい線」行っているなぁ、ということを再認識したというのが本音ですが・・・・(笑)。



by supernova1987a | 2017-04-14 07:07 | 自然写真 | Comments(10)

ASI174MC-COOLを見直してみる

★にゃあさんに触発されて・・・

ASI1600MC-COOL&MM-COOLの導入により、最近出番が無くなっていたASI174MC-COOLなのですが、にゃあさんの新兵器「QHY5Ⅲ174-M」の記事
に触発されて、久しぶりにASI174MC-COOLの撮影データをいじくってみました。


★ASI174MC-COOLの弱点は・・・

実は、拙ブログはASI174絡みのアクセスが大変多いのです。
それだけユーザーさんが多いのでは無いかと思うのですが、たぶん皆様下記の2点で苦労されているかと・・・
 弱点①:盛大なアンプノイズがあり、冷却しても消えてくれない
 弱点②:結構な量の横シマノイズ(カラムノイズ)がある
ところが、ステライメージではなくて最近お気に入りのAutoStackert!2には、ASI174系の処理にうってつけの「カラムノイズ低減機能」が実装されていますので、試してみることにしました。

今回処理するのは、去年の5月にVMC260L+ASI174MC-COOLで撮影したM27画像200コマのFITSファイルです。
ちなみに撮影データは下記の通り

[ZWO ASI174MC-Cool]
Pan=0
Tilt=0
Output Format=Fits files (*.fits)
Binning=1
Capture Area=1936x1216
ColourSpace=RAW16
High Speed Mode=On
Turbo USB=80(Auto)
Flip Image=None
Frame Rate Limit=Maximum
Gain=300
Exposure (ms)=15
Timestamp Frames=Off
White Bal (B)=99
White Bal (R)=60
Brightness=0
Gamma=71
Sensor Temp=-15
Cooler Power %=32
Target Temperature=-15
Cooler=On

★AutoStackert!を使う際の『お作法』

私が勘違いしているだけかも知れませんが、ステライメージとは異なりAutoStackert!2には独特な『お作法』があるようです。

①FITSファイルを読み込むと天地が反転してしまう
 →これによりベイヤー配列が変わってしまう

②ダークファイルを読み込むことはできるが、ステライメージでコンポジットしたダークファイルがデフォルトでは読めない
 →エラーが出る。

★デモザイク(ディベイヤー)の設定

ASI174MC-COOLは元来RGGB型のベイヤー配列なのですが、これをAutoStackert!に読ませると

f0346040_04505861.jpeg
こんなふうに天地が反転していると推測されます。
したがって、ベイヤー変換を指定するメニューでは、本来のRGGB型ではなく、GBRG型を指定してやる必要があります。

f0346040_04522289.jpeg
※実際にはプレビュー画像が見られますので、型を覚えていなくても手探りで片っ端から型を変えていけば適正な設定は見つけられます。

★ダークファイルのロード

よく知られているように、ダークファイルやフラットファイルは、ライトフレームに対して「減算」や「除算」を行うためのデータです。
これは画像を滑らかにしてSN比を向上させる「加算」系の処理と真逆の方向性ですので、ダーク補正やフラット補正を行うことにより著しく画質が低下してしまいます。それでもダークノイズや周辺減光を除去しないわけにはいかないので、あらかじめダークファイルやフラットファイル自体を多数(少なくともライトフレームと同数かそれ以上)撮影しておき、それらをコンポジットしてから補正することが大切です。

ところが、AutoStackert!にステライメージでコンポジット済みのダークファイルをロードしようとすると・・・

f0346040_05005636.jpeg
f0346040_05012696.jpeg
こんなメッセージが出て怒られます。
メッセージを意訳すると
「こんな特殊なFITSファイルは読めないよ。読めるようにして欲しければ連絡ちょうだい。」
という訳です。
そこで頭を冷やして考えてみたのですが、そもそもASI系のRAWファイルは16bitのFITS形式な訳で、それが読めると言うことは「悪い」のはコンポジットしたダークファイルを保存したステライメージの方だと言うことになりますね。

そう言えば、ステライメージで処理したファイルは何も考えずに

f0346040_05061565.jpeg
64bitの実数形式で保存してしまってました。
この形式が使えるが故にステライメージは何枚加算コンポジットしてもサチることなく処理できるのですが、それはあくまで特殊な変数空間を使えるステライメージ特有の性質です。これでは他のソフトで読めという方がムリですね。

そこで・・・・

f0346040_05100577.jpeg
汎用性を高めるために、整数型の16bitを指定してダークファイルを保存してみると・・・・

ちゃんとAutoStackert!2が認識しました!!

盛大なアンプノイズはダークファイル減算でかなり軽減できます。


★横シマノイズを軽減する

AutoStackert!2のメニューには、カラムノイズ(横シマノイズ)の補正機能が実装されています。しかも「MX174等にどうぞ♪」と明記されているのですから、これを使わない手はないですね♪

さっそく、使ってみます。
f0346040_05003318.jpeg
これで、スタッキング時に横シマノイズが軽減されるはずですね。

★さて効果の程は・・・?

ステライメージとAutoStackert!2について、それぞれ200コマのコンポジットを施し、レベルを調整した画像を比較してみます。

f0346040_05190327.jpeg
 ※左:ステライメージでコンポジット 右:AutoStackertでスタッキング
 (ともにダーク減算あり、フラット補正は無し)

これだとよく分からないので拡大表示してみます。

f0346040_05202053.jpeg
おお!
左の画像に見られる横シマノイズが、右の画像では見事に消えています!!
AutoStackert!2 すげえ!!

★せっかくなので・・・・

画像を強調すると目立ってしまう横シマノイズが回避されましたので、先日、フォトショップなどを持っていなくても単体で駆動できることを見つけたNikCollectionのHDRを使って加工してみます。


さらにそれをシルキーピクスで味付けしてみると・・・・・


・・・ででん!

f0346040_05261960.jpeg
 ※左:これまでの処理 右:今回の画像処理

まあ、ちと画像が荒れ気味ですが、M27の微細構造が目立ってなかなか面白い画像になりました。


・・・むう。

こうなると、ASI174MC-COOL 現役復帰させるかなぁ♪
(1600万画素のASI1600系と異なり230万画素のASI174は、とにかくデータが軽いのですよね~。ラッキーイメージングには好適かも)

P.S.
もちろん、本命はASI1600MM+MCの「ビームスプリット同時露光によるLRGB」であることには違いないのですが。


by supernova1987a | 2017-04-12 05:31 | 機材 | Comments(4)

NIKcollectionで遊んでみる

★天体写真の画像処理では

主に使っているソフトは、ステライメージ6.5とレジスタックスとAutoStakkert2とシルキーピクスなのですが、そのうちフォトショップも導入するんだろうなぁ、などと考えている内に、フォトショップ用のプラグインとして最近ウワサのNikCollectionで遊んでみることに。

本来は、プラグインですから、メインアプリであるフォトショをインストールしたからの作業のハズですが・・・・

★あれれ?
インストールしたらEXEファイルが出来上がったので、ダメ元でクリックしてみたら・・・

ん??

f0346040_01112339.jpg
何事も無く単体で立ち上がるじゃないですか!(上記はHDR用のプログラムの起動画面)
しかも「ファイル」メニューがあるので、そこから元画像ファイルを読み込んでみると・・・

f0346040_01124209.jpg
あれ・・・ちゃんと処理できちゃう

・・・え?ひょっとして、これ(NIKCollectionが単体でも使える)って、常識だったの??

・・・うーむ。

HDR処理などはもちろんですが、個人的にはニコンのキャプチャーNXが「D」になって使えなくなっていた「コントロールポイント」機能が使えるようになる点がものすごく魅力的。

※ファイルメニューが無いプログラムもありましたが、画像ファイルをEXEファイルの上にドラッグしてみたら動いちゃいました。


★過去の干潟星雲を処理ってみると

VMC260L+D810Aで撮影したM8干潟星雲の画像をNikCollectionのHDRで処理してみた。

f0346040_01165169.jpg
左:ステライメージで15秒露光×400コマのコンポジットなどを行った画像
右:NikCollectionのHDRで処理したもの

うむ。なかなか面白い♪
画像が荒れ荒れになってしまうこれど、これはこれで「アリ」な方向性ですね。

『天邪鬼』な あぷらなーととしては、これまで「メジャー路線」からは意図的に逃げてきたのですが、そろそろメジャーなアプリにも触ってみようかなあ・・・。


★画像処理とは関係ありませんが

・・・という訳で、フォトショを入れるかどうかはまだ検討中ですが、
手始めにVisualStudioのコミュニティエディション(これ無料なのにほぼフル機能なんですよねぇ)をインストールしてみた。(さよならDelphi・・??)
オブジェクトPASCAL(Delphi)の文法を思い出したばかりなのに、今度はVisualBASICの記憶を蘇らせる必要がありますが、これでビームスプリッタの弊害を評価するためのレイトレーシングプログラムでも組んでみると面白そう。いや、Delphi自体は大好きなんですが、色々と挙動不審なことが多いのと、なにより参考書籍が少なすぎるのがネックでして・・・・。(プロ版はお高いですしね)


by supernova1987a | 2017-03-21 01:35 | 天体写真 | Comments(10)

ベイヤー素子は悪いことばかりじゃない?

※だいぶブログ更新をサボっていたので、今回の記事の前半はこれまでのまとめです。

★そもそもMMを追加購入したのは・・・
ASI1600MC-COOLに加えて、ASI1600MM-COOLを購入したのには色々な目論見があったわけですが、その内の一つに
「ベイヤー素子のMCよりも非ベイヤー素子のMMの方が解像度が高いはず」
というものがありました。

★ベイヤー型で撮影すると・・・
※以前VBAで組んだベイヤー素子シミュレートプログラムに若干のバグがあったので、再処理。

f0346040_22094029.jpg
簡単なシミュレーションの結果、左のような天体があったとして、中のようなベイヤー配列(GRBG型)の撮像素子で撮影すると、右のようなRAWデータ(ベイヤーデータ)が得られる事が分かりました。

このRAWデータを元に、R,G,B各素子ごとのデータに色を付けてみると、
f0346040_22123972.jpg
こんな感じになります。当然ですが、スカスカですね。

これを普通にRGB合成すると・・・

f0346040_22135998.jpg
こんな画像になります。
イメージ的には、ちょうどテレビやモニターをルーペで拡大したような感じですね。

さすがに、これでは汚いので、先ほどのRGBデータの隙間を補完処理で埋めると
f0346040_22175012.jpg
こんな感じになります。

最後に、これらをRGB合成すると

f0346040_22223086.jpg
このような綺麗な画像になります。
実際にベイヤー素子を持つカメラで撮影したRAWデータを『現像』処理(デモザイク処理、ディベイヤー処理)した場合は、およそ上記のような処理が現像ソフト内でなされていると思われます。

★モノクロカメラで撮影すると

ASI1600MMなどのモノクロカメラの場合、撮像素子にカラーフィルタがついていませんのでベイヤー処理の必要がありません。
たとえば、上記のテストモデルの場合、撮影したRAWデータが、いきなり
f0346040_22322412.jpg
こんな画像になるため、『現像』の必要が無いわけです。

また、デモザイク時の補完処理が入りませんので、素の解像度がそのまま反映される点もメリットです。
カラーカメラで撮影した画像をモノクロ処理した場合と、モノクロカメラで撮影した場合を比較すると、例え画素数が同じだったとしても、下記のように解像度の大きな差が生まれます。
f0346040_22395835.jpg
 左:カラーカメラで撮影してモノクロ化したシミュレーション
 右:モノクロカメラで撮影したシミュレーション


★昼間の風景で比較すると

実際に、昼間の風景で撮影して比較してみた場合でも、まさにシミュレーション通りの結果が得られました。

f0346040_22504030.jpg
 ※左:BORG60ED+ASI1600MC-COOL
 ※右:BORG60ED+ASI1600MM-COOL

等倍以上に拡大すると、圧倒的にモノクロの方がシャープなことが分かります。


★ところがどっこい

実際に星雲などを撮影して比較すると、カラーでもモノクロでも、その解像度にほとんど差が無いのですねぇ(泣)
色々考察した結果、主たる要因は2つありまして、
VMC260L(1860mm)直焦点撮影の場合
 ①そもそもシーイングの影響で撮影前に対象がボケている
 ②ガイドエラーで画像がブレている
の2点により、モノクロカメラの解像度は無駄になっていると結論づけられました(涙)

★結局シャープになったのは

というわけで、モノクロカメラの導入で「飛躍的にシャープ」になったのは、
なんと「ノイズ」だけ!!
という大爆笑の結果になりました(笑)

★それならば、逆転の発想で・・・・

ようやく本題です♪
さて、下記の画像、どちらがお好きですか??

f0346040_23122751.jpg
これ、どちらもVMC260L+ASI1600MC-COOLでゲイン400+2秒露光で撮影したM42の中心部です。
コンポジットもノイズ処理も一切無しの素のデータです。

しかし、明らかに右の方がノイズが少なくて滑らかですね。
一体何が違うのでしょう??

実は、右の画像はモノクロカメラで撮影したデータを
「あえて」ベイヤー現像したものなのです。
一応GRBG型を選びましたが、そもそもフィルターが存在しませんので無意味です。
本来なら、ベイヤー処理の弊害で解像度が低下するはずなのですが、
 ○肝心の天体自体がシーイングの影響でボケボケ
 ○各種ノイズはシーイングの影響を受けないのでバリバリシャープ
という現状なら、いっそのことデモザイクしてノイズの解像度を下げてしまえ!
という「お遊び」です。本末転倒な処理ではありますが、緊急用としてノイズを滑らかにする効果はありますね♪

★何が言いたいかというと・・・

シーイングの影響が大きい環境下では、一概にベイヤー素子が悪いとは言えず、むしろノイズ低減には寄与しているとも解釈できますよ~。
ということでした♪

(注)当然、下記の場合はモノクロカメラにメリットがあります。

 ①焦点距離が短い場合に解像度を上げる
 ②シーイングが良い場合に解像度を上げる
 ③そもそも感度が高いことを活用する
 ④G以外の解像度(RやB)を上げたい(ベイヤーはGだけ解像度が高い)
 ⑤フィルターワークを活用する場合

PS.
あーあ、この休日も2夜連続で曇り+雨・・・・・


by supernova1987a | 2017-02-06 23:30 | 機材 | Comments(4)

復活の狼煙?

★お仕事も落ち着いてきましたので
そろそろ天文の世界に復帰したいのですが、
色々と考えていることがあったので、少しずつやっつけていきたいと思います。

★これからやってみたいこと

 ①ノイズについての「考察ごっこ」
 ②解像度とノイズの妥協点探し
 ③MCとMMのツインシステムの始動
 ④MMのフィルターワーク事始め
 ⑤APTの運用実験
 ⑥光跡途切れとイーブンオッドコンポジット法の検証
 ⑦大気の分散による色ズレの補正実験
 ⑧赤外線撮影による星雲の透過実験
 ⑨偏光フィルタの利用によるシンクロトロン輻射の検出
 ⑩LEDによる光害への対策

あかん・・・。やりたいことだらけで、こりゃ1年がかりですなぁ(汗)
まあ、どれだけできるか極めて怪しいですが、はじめに宣言しておかないとサボりそうなので(笑)。

①ノイズについての「考察ごっこ」

 昔の勘が蘇ってきたので、少し真面目に考えてみようかと。
ちなみに、若かりし頃は、約40画素(40万では無く、だだの40)の検出器で天体の撮像めいたことをやっていました。
ただし、(デジカメに例えるなら)1画素の大きさが畳2枚分くらいあるという超巨大なヤツですが。・・・で、それで検出していた天体というのが暗いのなんのって、光の粒(※)が1時間に1粒しか飛んでこなかったり、下手すると1年間で1粒しか飛んでこなかったり、という難儀な対象です。それをがんばって『写す』のですね。
・・・で、ショットノイズの正体は、そもそも光子がやって来る頻度のバラツキによるものだとの仮定の元、色々考察ごっこしてみようかと・・・。
(※実際は、フォトンばかりではなく、プロトンだったり他の原子核も飛んで来ますが、これらはバックグラウンドノイズ扱いなので・・・)


②解像度とノイズの妥協点探し

どうやら、シーイングの影響やら何やらで、ASI1600MMの解像度は活かせそうにないので、じゃあ、解像度を犠牲にしてノイズを減らす方向性を探ろうかと。
その第一歩は早速ゴソゴソ始めました。
「えっ?モノクロカメラでベイヤー現像?」
とか、アヤシいことを楽しんでみようかと。


③MCとMMのツインシステムの始動

BORG60ED2本を使って、せっかく構築したMMとMCのツインシステムですので、早く実写しなきゃ・・・という訳です。
輝度データをASI1600MM-COOLで撮像すると同時に、カラー情報をASI1600MC-COOLで撮像するという作戦ですね。


④MMのフィルターワーク事始め

別に「いわゆるナローバンド」に走るつもりは無いのですが、Hαだけはナローで得たいので、フィルターホイールやらなにやら買い込んでしまいました。
もう少しだけ買いそろえるものがありますが、色々と勉強してみようかと・・・。


⑤APTの運用実験

インストールだけして放置していたAPTですが、最近、にゃあさん や けむけむさん や オヤジさん が本格的に参戦したようで、居ても立ってもいられず・・・。
プレートソルブとかディザリングができれば良いなあと夢想中。K-ASTEC改造アトラクスが難しいなら、サブ赤道儀のEQ6PROで運用しても良いかも・・・。


⑥光跡途切れとイーブンオッドコンポジット法の検証

2013年に突然ひらめいた「イーブンオッドコンポジット法」は、理論的に回避できない「比較明コンポジットによる光跡途切れ現象」を本質的に解消するための突破口として自信満々だったのですが、一般のデジカメだと画像処理エンジンがジャマして、理論通りに上手くいきませんでした。(例えるなら、補正が効き過ぎてしまう状況)・・・なので、素のデータ(に近いもの)が得られる冷却CMOSカメラで、この手法の有効性を検証ごっこしてみようかと。


⑦大気の分散による色ズレの補正実験

惑星撮影はもちろんなのですが、長焦点のVMC260Lでは星雲撮影ですら、大気によるプリズム効果で光が分散してしまって色がズレる現象に悩まされています。
大気の分散を打ち消す(逆方向に分散させる)プリズムは入手したので、実戦テストをしてみたいなあと。


⑧赤外線撮影による星雲の透過実験

明るい星雲の中心部がサチってしまい、恒星がうまく見えないなら、いっそのこと赤外線で透過しちゃえ、というお遊びです。
学術的には無意味ですが、赤外線フィルタ+MMでL画像、光害カットフィルタ+MCでRGB画像、それらをLRGB合成とかやってみたいです。


⑨偏光フィルタの利用によるシンクロトロン輻射の検出

かに星雲などの超新星レムナントの中には、中心星である中性子星の影響で強い磁場が発生し、シンクロトロン輻射が起こっているものがあります。シンクロトロン輻射の特徴として強い偏光が挙げられますので、偏光フィルタでコイツを検出できると楽しいなあ・・・などと。


⑩LEDによる光害への対策

輝線スペクトルを持つ蛍光灯やナトリウムランプと異なり、連続スペクトルを持つLED照明の場合は光害カットフィルタでもその影響を排除できません。
・・・・が、これを回避できそうなアイディアを思いついたので(たぶん失敗しますが)実験してみようかと・・・。



★上記の内一体どれだけが・・・
実現できるか分かりませんが、これだけ遊べればASI1600MM&MCコンビも無駄な出費では無かったと自己満足できるでしょう(笑)。
あ、⑩は理論的にASI1600系では無理ですのでASI174MCを用いる予定です。


<お約束>
何度も言いますが、現在のあぷらなーとは天文の素人なので、厳しいツッコミは無しの方向性で、お手柔らかに・・・。
ええと、実は本業では大学入試対策の講義で教壇に立ってますが、担当の専門科目は(意外なことに)入試現代文ですので(爆)


by supernova1987a | 2017-01-30 23:47 | 天体写真 | Comments(11)

月夜の楽しみ?検証ごっこ①

元旦以来のお休みが取れましたが、すでにお月様が明るくなってまして、新作が撮れそうにありません。
こんな憂鬱な夜は・・・そう、「検証ごっこ」して遊ぶに限ります。

★その前に、お断りが・・・

先日、「長時間露光+少数枚コンポ」VS「短時間+多数枚コンポ」の検証ごっこを行いましたが、訂正があります。
当初「ゲイン400の8秒露光とゲイン400の0.5秒露光を比較した」と書いていましたが、どうも輝度レベルが上手く合わないので、よくよくデータを見てみたら、「ゲイン400+8秒露光」だと思っていた画像が、なんと「ゲイン200+16秒露光」でした。
ああ、これはもう、どうしようも無いミスですね。
そう言えば、途中でVMC260Lの副鏡が結露して撮像を中断したときにゲイン400+8秒露光の画像を撮り直すのを忘れていたっぽいです。久しぶりの結露で、ちとテンパっていたようです。全く面目ない・・・。

・・・というわけで仕切り直しです。

★こんな比較データは面白いと思いませんか?

<対決①>
 ゲイン400+4秒露光+1枚撮り
  VS
 ゲイン400+0.5秒露光+レベル調整で輝度8倍
  VS
 ゲイン400+0.5秒露光+8枚加算コンポジット

<対決②>
 ゲイン200+16秒露光+1枚撮り
  VS
 ゲイン400+2秒露光+1枚撮り
  VS
 ゲイン400+2秒露光+8枚加算平均コンポジット

・・・というわけで、やってみた。


★対決①:ゲインが同じ場合の比較

VMC260L+レデューサ+LPS-P2フィルタにZWOの冷却CMOSモノクロカメラASI1600MM-COOLを装着してM42を撮影し
 A:ゲイン400+4秒露光
 B:ゲイン400+0.5秒露光
を比較してみます。(冷却温度は全て-10度です。ダーク・フラット補正は加えていません。)
ちなみに今回画像処理して気づいたのですが、短時間露光のコマにステライメージのホット&クールピクセル除去を掛けてしまうと、低輝度光子の到来頻度揺らぎ(フラクチェーション)に伴うショットノイズ(単なる揺らぎなので消すべきでは無い)ではなくダークノイズ(消すべき)として認識されることによって、正しいシグナルが消される傾向にある「らしい」ことが分かったので、今回はABともにホット&クール除去を行いませんでした。(この点はベイヤー構造からホットピクセルの弁別が可能なカラーカメラと異なり、モノクロカメラの弱点かも知れません)

f0346040_22412758.jpg
  左:ゲイン400+4秒露光 右:ゲイン400+0.5秒露光

正真正銘の「撮って出し」なので、当然、明るさには大きな差がありますね。
では、0.5秒露光の画像をレベル調整して、輝度値を8倍にしてみます。

f0346040_22441632.jpg
  左:ゲイン400+4秒露光 右:ゲイン400+0.5秒露光(輝度値8倍にレベル調整)

ああ、良い感じに明るさが揃いました。さすがデジタルですね。低照度相反則不軌特性のあるフィルムではこうはいきません。フィルムなら4秒露光の方が暗くなります。 ただし、むりやりレベルを上げたので当然画面はザラザラです。

では次に、レベル調整する前の0.5秒露光の画像を8コマ分加算コンポジットしてみます。(平均では無く単純加算です)

f0346040_22502818.jpg
  左:ゲイン400+4秒露光 右:ゲイン400+0.5秒露光×8コマ加算

おお、まるでそっくりですね♪
前回の仮説(長時間露光しても、短時間露光を加算処理しても、結果は同等)が「ある程度」検証できたと思います。

では次に、ゲインを変えた場合について見てみます。

・・・が、その前に・・・

★ゲインの基本的な考え方

デジカメのISOに相当するのが冷却CMOSカメラのゲイン設定ではあるのですが、少々特殊でして(私が勘違いしていないのであれば)「ゲインを70増加するごとに感度が2倍になっていく」と把握しています。
たとえば、ゲイン200をゲイン270にすると感度が倍になって露出時間が半分で済み、ゲイン200をゲイン340にすると感度が4倍になって露出時間が1/4で済む、などという捉え方ですね。

本当にそれに近いことが起こっているのか試してみます。

ゲイン200をゲイン400に変えた場合、
 2^((400-200)/70) = 7.246
(※^は累乗を表したつもり)
となりますので、理論上は感度が約7.25倍になる計算になります。


shiroさんからミスのご指摘をいただきましたので以下、訂正します。


デジカメのISOに相当するのが冷却CMOSカメラのゲイン設定ではあるのですが、少々特殊でして「ゲインを60増加するごとに感度が2倍」になっていきます。
たとえば、ゲイン200をゲイン260にすると感度が倍になって露出時間が半分で済み、ゲイン200をゲイン320にすると感度が4倍になって露出時間が1/4で済む、などという捉え方ですね。

本当にそれに近いことが起こっているのか試してみます。

ゲイン200をゲイン400に変えた場合、
 2^((400-200)/60) = 10
(※^は累乗を表したつもり)
となりますので、理論上は感度が10倍になる計算になります。

さて、手持ちのデータでは
ゲイン200+16秒露光とゲイン400+2秒露光がその比率に近いので比較してみましょう。
f0346040_22553276.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+2秒露光

少し右の方が明るいですが、大差ありません。(本当は右の方が少し暗くなるはずなのですが・・・ね)


★対決②:ゲインを変えた場合の比較

では、本題の
ゲイン200+16秒露光 VS ゲイン400+2秒露光×8枚コンポジット
を比べてみます。

f0346040_23020817.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+2秒露光×8コマ加算平均コンポジット(輝度値が揃っているので平均処理です)

ほとんど見分けがつかなくなりました。
よく見ると、シンチレーションやガイドミスの影響を受けない分、高ゲイン+短時間露光の方が恒星が明るく、全体的な解像度も勝っていますね。

では次に、デジタル現像で暗部を炙り出しつつトラペジウムがサチらないように調整してみます。

f0346040_23052656.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+2秒露光×8コマ加算平均コンポジット 両者ともデジタル現像処理

いかがでしょう??
完全に右の方が解像度が高くなりましたね♪

・・・といいつつ、よく見ると左のスパイダーによる回折像が不自然なので、結露が取り切れてなかったり、ヒーターのコードによる回折の影響があるかもです。
なお、右の方がノイズが少なそうに見えるのは、恐らくノータッチガイドによる「天然ディザリング」効果に起因するものだと思います。
きちんと精密オートガイドしたり真面目にダーク減算処理した場合は、異なる結果になるかと。


★という訳で、今回の「検証ごっこ」の結論は

①同じゲインで比較した場合、
 長時間露光の1枚撮りと短時間露光の加算コンポジットは、
 総露光時間が同じなら、ほぼ同等の結果となる。

②ゲインを変えて比較した場合、
 低ゲイン長時間露光と高ゲイン短時間露光の加算平均コンポジットは、
 総露光時間が同じなら、ほぼ同等の結果となる。

※強いて言えば、①②の双方とも短時間露光+多数枚の方が解像度は高くなる(かも)

といったところでしょうか。



<お約束♪>

あくまで「検証ごっこ」という名の「遊び」です。
また、今回のデータはM42の中心付近という明るい対象を用いた比較にすぎません。
貴重な撮影時間を無駄にしないためにも、結果の判断は皆様の経験と主観を信ずべきかと思います。


by supernova1987a | 2017-01-10 23:21 | 天体写真 | Comments(8)

ASI1600MC-COOLの謎⑩.

★昼間は良い天気でした・・・が

夕方から突然薄雲が広がってしまって、本日の「ASI1600MM-COOLデビュー戦」は延期となりました。
ここまでタイミングが悪いと、もはやイジメとしか・・・・。ううう(涙)。

★というわけで、勘を取り戻すために

過去のMCで撮影したデータを色々と画像処理してリハビリしているのですが、ふとその途中で「のっぴきならぬ」事に気づきました。

ちなみに、「ノータッチガイドによる短時間露光+多数枚コンポジット」は私が最も得意とする「手抜き撮影法」ですが、その際に重要なのは、コンポジット時に「加算平均」ではなく「加算」を用いることです。(アストロアーツの公式コメントでは加算平均でも良いそうですが、これはステライメージが特殊なだけでしょうね)
たとえば15秒露光の元データが著しく露光アンダーである場合、暗い部分は階調が破綻しているので普通はいくらコンポジットしても「写ってないものはあぶり出せない」ハズです。ところが、加算コンポジットの場合は値をどんどん加算していきますので、言ってみれば単なるコンポジットというよりはむしろ、露光を何段階かに分けて行ったものを最後に合算するという行程を行っている訳で、フィルム時代の多重露光に相当すると把握しています。

実際の処理はこんな感じですね
f0346040_20063068.jpg
 左:15秒露光元データ 中央:40枚加算コンポジット後 右:さらにレベル調整

実は、加算コンポジットの場合は注意点があります。
左の元画像を加算コンポジットした段階(中央)で画像が「真っ白け」になりますので、一瞬「げ、サチった!!」と早合点してしまいがちなのですが、実はサチって「いない」のです。ステライメージは96ビットの画像処理空間を有しているため、いくら足し算しても事実上飽和しません。そこで、輝度グラフを見ながら適切なレベル調整をしたりデジタル現像処理する等によって、右のように良い感じの画像が得られます。また、単純に加算するだけですから、多段階露光した場合でも一気に処理して大丈夫ですし、手動でコンポジットする場合のように、「2枚目は50:50、3枚目は66.6:33.3、4枚目は75:25・・・・」などと加重平均の比率を計算しながらチマチマと処理する必要性も、いわゆる「トーナメント方式」で多段階に処理する必要性も皆無です。
ステライメージの最も優れた点を上げるとすれば、ひとえにこの広大な画像処理空間が使えることでしょうね♪

★「のっぴきならぬ」事とは・・・・

さて、いつものように加算コンポジットしている最中に、ノイズの出方などを見たくて「RAWのまま&位置合わせ無し」で加算処理した画像を拡大すると、「のっぴきならぬ」事に気づきました。まあ、下記の画像を見てやってくださいな。
f0346040_20211078.jpg
ASI1600MC-COOLでゲイン400・15秒露光の画像をベイヤーのまま40枚加算コンポジットして400%に拡大したものです。

な、なんだこの黒いポツポツは?!

40枚も単純加算しているんですから、普通は画面のどこをとっても一見サチったように真っ白けになるはずです。・・・・が、この黒いポツポツは40枚加算しても「一向に明るくならない」ということになりますね。

ああ、これって・・・

デジタル一眼レフなどではメーカーや機種によって「ピクセルマッピング」機能が実装されていたり、サービスセンターで「ピクセルマッピングサービス」をしてくれる場合があります。例えば、ニコンの場合、ニコン1シリーズだけには「ピクセルマッピング機能」があります。ここでいうピクセルマッピングとはいわゆるキャリブレーションの一種でして、永続的に出る輝点(本来の意味のホットピクセル)や永遠に黒いままの点(本来の意味のクールピクセル)に対してその該当ピクセルを「殺す」処理を指します。ただしその処理過程はブラックボックス化されているので、なんだか怖くて私は手持ちのニコン1シリーズ(ニコワン大好きで4台も持っていたりする)に対しても一切「ピクセルマッピング機能」を実行したことが無いのですが、どうやらASI1600MC-COOLに見られる黒いポツポツはクールピクセル(デッドピクセル)である可能性が浮上してきました。

だって、ランダムノイズなら、40枚も重ねて消えないハズが無いですからねぇ。(ちなみに、上記画像はダーク引きをする前の『素』のベイヤーデータを加算したものですので、ダークの引きすぎではありません。)

★CCDと比べてCMOSには経年変化のウワサもあって・・・

一説によると、CMOSセンサーの場合、宇宙線被爆などによる破壊と経年劣化などにより欠陥ピクセルが増えていくという「恐ろしいウワサ」も聞きますので、別日程の画像でも同じようなクールピクセルが見られるか試してみました。

f0346040_20365404.jpg
 ※左は8/13に撮影した15秒露光×40コマの加算 右は8/31に撮影した15秒露光×40コマの加算

上記画像は、それぞれ別日に撮影した画像を600%に拡大したものですが、ぱっと見て黒いポツポツの位置は一致していないように見えます。
ところが、よーく見てみると・・・・

f0346040_20392107.jpg
赤丸で印を入れたところなど、別日程でしかも別対象を写したにも関わらず、完全に一致するポツポツが多数見られることが分かりました。

・・・という訳で

「ASI1600MC-COOLには、元々デッドピクセルが存在し、メーカー側では特にピクセルマッピングは施されていない」
可能性が浮上してきました。


★ちなみにデッドピクセルが存在すると・・・

MCはベイヤー型のカラー撮像素子ですので、1つのピクセルが死んでいることは、輝度情報のみならず「その色情報が失われる」ことにつながります。

たとえば、上記の画像をそのまま現像(デモザイク)してしまうと

f0346040_20462417.jpg
 左:ベイヤーデータのまま 右:デモザイク(ディベイヤー)処理後

死んだピクセルの色に対する補色(Rが死ぬとシアン、Gが死ぬとマゼンタ、Bが死ぬとイエロー)が生じた上に、デモザイク補完処理によってその影響が周辺のピクセルに波及します。

これまで、いわゆる「縮緬ノイズ」↓
の原因は「ダーク除去の過不足」と思い込んでいましたが、そもそもデッドピクセルが効いてきている可能性が出てきましたね。

え?「どのピクセルが死んでいるのかは数値化できるのか?」ですか?
ええと、先日来やっているDelphi遊びでプログラミングした「なんちゃってFITS画像解析ソフト」↓

には、容易に実装可能でして、その気になればあとからピクセルマッピングできるのですが、いかんせん処理速度が遅すぎて実用化は遙か遠い未来です(泣)。

※ステライメージの「ホット・クールピクセル除去」フィルタである程度は緩和できると思いますよ。念のため。



by supernova1987a | 2016-12-19 20:54 | 機材 | Comments(10)


タグ
最新の記事
記事ランキング
ファン
ブログジャンル
画像一覧
外部リンク