あぷらなーと


あぷらなーとの写真ブログ
by あぷらなーと
S M T W T F S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
あぷらなーと
「自然写真大好き」
HNあぷらなーと が

いろんな写真ネタを
のんびり語ります。

気合い入れすぎると
続かないので、
「ぼちぼち」いきます。

生息地:香川・徳島
カテゴリ
最新のコメント
定年前に辞職して母の介護..
by オヤジ at 05:51
こりゃまたスゴそうなプリ..
by kem2017 at 05:21
> Gさん 「ディープ..
by supernova1987a at 10:56
> オヤジさん おお、..
by supernova1987a at 10:51
いやはや、セットで5、6..
by G at 16:18
閃いたんですけど、残念で..
by オヤジ at 11:18
> にゃあさん 最..
by supernova1987a at 10:02
> オヤジさん は..
by supernova1987a at 10:00
そんな名機だったとは! ..
by にゃあ at 08:46
難しいことは、全然だめで..
by オヤジ at 07:41
以前の記事
お気に入りブログ

タグ:ASI1600MC-COOL ( 60 ) タグの人気記事

ビームスプリッタで大赤斑を撮る

★久々に晴れたので・・・

お仕事が立て込んでいた日曜日だったのですが、良い天気だったので帰宅後すぐにニワトリ開始することに。
空はどんよりしていて北極星が目視できない状態でしたが、なんとなくシーイングが良さそう♪

早速、VMC260Lにビームスプリット装置を装着して、ASI1600MC-COOLとMM-COOLの同時露光で木星を狙うことにしました。

今回は、ビームスプリッターにADC(大気差補正装置)とIR/UVカットフィルタとショートエクステンダーメタルを加えて撮影してみます。


★SERファイルの1コマキャプチャ
f0346040_09121856.jpg
 ※左:MCの1コマキャプチャ 右:MMの1コマキャプチャ
  (MCはビームスプリッタの影響で鏡像になっています。)

最近ご無沙汰していた大赤班がちょうど良いところにありました。
しかも、画像処理前の動画を再生しただけでも、いつもよりもシーイングが良いことがうかがえます。
さっそくAutoStackert!2で1000コマスタックしてみます。

★MCとMMで同時露光した各1000コマのスタック
f0346040_09162484.jpg
 ※左:MCの1000コマスタック 右:MMの1000コマスタック
  (MCは左右反転処理しました。)

ぐっと滑らかになり色んな模様が見えてきました♪
では、レジスタックスに回してウェーブレット処理してみましょう。
これは期待できそうで、ワクワクします。


★MCとMMのウェーブレット処理画像
f0346040_09190808.jpg
 ※左:MC 右:MM
 
おお。細かい模様がウジャウジャ現れてきましたよ。
良い感じです♪
若干ですがMMの方がシャープに見えますが、それほど差はありません。
いつもよりはシーイングが良いとはいえ、木星像はユラユラしていましたのでベイヤー処理の弊害が見えにくいのでしょうね。


★LRGB合成して仕上げます

f0346040_09215958.jpg
 ※左:MC単独 右:MMのL画像とMCのRGB画像のLRGB合成

大きな差では無いですが、明らかにLRGB合成した画像の方が解像感が高いですね♪


★シルキーピクスで微調整して完成
f0346040_09241028.jpg
うむ。
一応自己ベストの木星像ですなぁ。
ベテランの方の解像度には及びませんが、ここまでくると、あとはシーイングの問題ですね。


★気にすべきかどうか微妙ですが

そういえば、素のVMCもビームスプリット装置込のVMCも、一体どれくらいシャープなのかは検証したことがありませんでした。
機会があれば『検証ごっこ』してみたいのですが、あいにくフーコーテスターもロンキーテスターも持ってないので、もしやるとすればハルトマンテストか焦点内外像テストくらいしか思いつきません。

というわけで、撤収前に焦点内外像を(テキトーに)撮影してみました。

f0346040_09405657.jpg
 すみません。どっちが焦点内像でどっちが焦点外像か忘れてしまいましたが、とにかく「非対称」であることだけはハッキリと分かりました。
ちなみに、この像はADCやらビームスプリッタやらエクステンダーやらが途中に入ってきている状態(要するに、上記の木星を撮影した条件)で撮影したので、複合的に収差が出ているんだと思いますが、はあー。『ダメな望遠鏡の見本』にような非対称性ですねぇ。
さらに奇妙なことには、たいていの『ダメ望遠鏡』は、回折リングの間隔が「徐々に」広がっていくか「徐々に」狭まっていくかのどちらかだと思っていたのですが、なんかある一定の輪体に達すると急激に悪くなっているような感じで「気色悪い」。
 でも、ある程度のレベルまでは惑星も写せるし、望遠鏡の収差よりも小さなシーイングには出会ったことが無いことだし、ま、いっかー。
あ、そうだ!
「内外像ともに「同心円」にはなってるので、光軸がバッチリ合っていることが確かめらた」
ということにしておこう(笑)。

(『超絶良シーイング』に遭遇したときに「泣きを見そう」な気がしないでもないけれど・・・・・。)

 あの・・・み、皆さんの望遠鏡って、焦点内外像がちゃんと「対称」になってます???

<補足>
カメラのレンズなら、上記の写真のうち左の状態が「二線ボケ」で右の状態が「芯のある柔らかなボケ」ということになって、前ボケか後ボケのどちらが良好という点で『個性(味)』として評価されますが、望遠鏡の場合は「ボケ味」は評価対象外なので内外像が完全に一致するのが理想(球面収差が無い)ですよねぇ・・・。

<参考>
ニコンの60mmマクロはボケ傾向が真逆となる2機種↓が併売されていて「好みで選べたり」しますが、ねぇ・・・・


by supernova1987a | 2017-05-22 09:53 | 天体写真 | Comments(8)

ビームスプリッタで『超マクロ』システムを組む

★完成したビームスプリットシステムを見ているうちに

惑星・星雲・彗星のそれぞれのテスト撮影が成功し、一通りの成果を上げた「LRGB同時露光用ビームスプリットシステム」ですが、他に使い道はないかなぁなどと妄想していた折、マクロ撮影にも転用できるのでは無いかと思いついた(なんか強引だなぁ)。

別に普通のマクロ撮影なら、デジタル一眼にマクロレンズを付ければ用は足りるのですが、「もっとスゴイ」やつが撮れないものかと思案した結果・・・・


★『超マクロ』撮影用・ビームスプリットシステム

・・・という奇妙な装置を組み上げてみた。

f0346040_00110737.jpg
星雲・彗星用のスプリットシステムと異なるのは主に下記の4点です。

 ①レデューサや光害カットフィルタは撤去
 ②IR/UVカットフィルタを内蔵
 ③対物部にM57ヘリコイドを追加
 ④ニコンAi50mmF1.8Sをリバースリングで逆付け

といったところでしょうか。

ちなみに、④について「おお!あれか!」と言う方は、MFのフィルムカメラ時代にマクロ撮影が趣味だった人ですね。
これまた最近ではトンと話題に上らないネタですが、念のため・・・・

★ニコンAi50mmF1.8Sとは?

 1980年代に初心者向けのニコン一眼レフの標準レンズ(今で言うキットレンズ)として流行ったレンズで、当時のニッコールレンズの中では最安値のレンズでありながら、非常にバランスの取れた描写とそのコンパクトさが魅力のレンズでした。何を隠そう、私が(中学生の頃に)最初に買ったレンズで、非常に思い入れがあるため未だに愛用しています。いわゆる『パンケーキレンズ』の走りだとも言えますね。
 
 そして、このレンズ、ニコンによれば「リバースリングで逆付けすればマクロ撮影にも好適」なのだそうで、「本式のマクロレンズは手が出ないがクローズアップレンズでは不満」という人にとっては非常にありがたい万能レンズだった訳です。ちなみに「逆付け」とはマウント側とフィルター側をあえて逆にしてカメラに取り付けるウラ技でして、最短撮影距離が大幅に縮まるとともにマクロ撮影時の画質も良くなるという手法です。

ただし、いくつか欠点があって
 ①全群繰り出し式のレンズの場合、レンズ側のヘリコイドが効かない
 ②自動絞りが効かなくなる
(一応、専用のパーツが用意されてはいますが、ベローズ用です)
という訳で、実質ピント合わせが非常に困難になります。

・・・・で、今回は
f0346040_00284635.jpg
こんな感じで、BORGのヘリコイドでピント合わせが出来るように改良してみました。
また、カメラとしては冷却CMOSカメラを用いますので、ピント合わせ時にゲインを上げればF22などに絞り込んでいても明るい像が得られます。


★なんだか仰々しい装置になりましたが

f0346040_00315096.jpg
こんな感じでマクロ撮影をスタート♪
もちろん、L画像はASI1600MM-COOLで撮影し、RGB画像をASI1600MC-COOLで同時撮影します。

まずは「お約束」の「物差し撮影」で、撮影倍率をチェックします。

f0346040_00325483.jpg
おお!これはスゴイっ!!
5mmのエリアがマイクロフォーサーズの長辺いっぱいに広がるではないですか♪
フルサイズ換算で言うと「7倍マクロ」ですね。


★もう一つの壁は・・・

以前にも書きましたが、マクロ撮影時には次のようなジレンマがあります。

 ○絞りを開けると、被写界深度(ピントが合う範囲)が浅くなってボケボケになる
 ○でも、絞りを絞り込むと、回折ボケが発生して全面がモヤモヤになってしまう

そこで、ですねぇ。

ビームスプリットシステムを用いて(いや、用いなくても良いんですが)ASI1600MM-COOLのL画像をレジスタックスでウエーブレットすることで回折ボケを回避しようという訳です。



★「MCのRGB画像」と「LRGB+ウェーブレット」の比較

普通に撮った場合と、今回の手法を比較してみましょう。
撮影対象は上記の撮影風景のとおりタツナミソウなのですが、あまりにも撮影倍率が高すぎて花にとりついたアリマキ(いわゆるアブラムシ)しか写りませんでした(笑)

・・・・あ、ここで念のため注意。注意ですー。

グロい昆虫写真が苦手な方は撤退してくださいね~。




-----------------------------





あ・・・・大丈夫なんですね?
ムシのドアップ写真




では行きます。

f0346040_00464026.jpg
※左:MCの10枚コンポジット 右:MMの60枚コンポジット+ウェーブレットを用いてLRGB合成
(ビニング画像のピクセル等倍)

どうです、左の画像に見られるモヤモヤが回折ボケなんですが、右の画像ではこれがほぼ消えて微細構造が明瞭になりました。

これをシスキーピクスでゴニョゴニョ微調整すると

・・・ででん!
f0346040_00550931.jpg

アリマキのドアップポートレート(?)の完成です。

上記の例は逆光気味で、ちと難しい条件だった上に撮影中にアリマキが少し動いてしまったので、楽勝で写せる茎部分を処理してみると、こんな感じでした。


f0346040_01454188.jpg
たぶん、アリンコさんから見ると草花もこんな風に見えているんでしょうねぇ。



by supernova1987a | 2017-05-08 21:40 | 自然写真 | Comments(8)

ビームスプリットシステムの本領発揮?

★先日のプチ遠征は悪条件でしたが

どうしても画像処理しておきたかった対象があります。
実は、それ『こそ』が、通常のLRGB分解撮影や、フリップミラーでのカラー・モノクロ切り替えシステムでは不可能な対象でして・・・

★ビームスプリットシステムの最大の利点は

f0346040_17213736.jpg
常に光を2分割してモノクロカメラとカラーカメラのセンサーを「同時」露光する点にあります。
もちろん、それぞれ光量が半分になってはしまいますので『総』露光時間はカメラ切り替え式と変わりません。でも、木星や彗星など自転や固有運動が大きい天体の場合、フィルターワークで分割撮影したりカメラを切り替えたりしていると、色がズレちゃいます。それを回避するには、鏡筒+カメラのシステムを二連装する『ツインシステム』や今回の『ビームスプリットシステム』しかないと考えたわけですね。(もちろん、動く対象でもカラーカメラのみを使えば問題はありませんし、動かない対象ならフリップミラーなどのカメラ切り替えで良いと思います。)


※制作記はこちら↓から・・・

※ファーストライトの様子はこちら↓から・・・

※発生する球面収差の試算はコチラ↓から・・・

※星雲の試写についてはこちら↓から・・・

※部品の詳細と撮影効率についてはこちら↓から・・・




★本領を発揮する対象として

①まずは、自転が速い木星(これは先日テスト撮影に成功しました)
②そして、固有運動が大きい彗星(実は、今回これを撮影したくて遠征したんですー)

f0346040_21074153.jpg
  ※ビームスプリッタシステムを装着したVMC260L 個人的にはなかなか『かっちょええ』と思う・・・。



★以前書いたように、条件は良くありませんでしたが

せっかくの遠征だったのに、モヤがかかるあいにくの天候だったので、5cmファインダーの眼視ではジョンソン彗星を視認することはできませんでした。
あいにく、現在の改造アトラクスは彗星を自動導入できないので、星図を見ながら、彗星がいるらしきエリアにある恒星を次々に導入しくという『飛び石作戦』で彗星に近づけました。ところが・・・ようやく、モニタに映し出された彗星は、26cm反射を使っているのにも関わらずとても貧弱でした。

さて、VMC260L+ASI1600MC-COOLでゲイン400の30秒露光で撮像したジョンソン彗星は、こんな感じ。

f0346040_17392335.jpg
く、暗っ!! これ、尾っぽとかあぶり出せるのでしょうか?!
やはり、この天候下では彗星は難敵だったようです。


★とにかく、撮影してみないことには

正直、心が折れそうでしたが、ビームスプリットシステムで同時露光を開始します。
MMとMC、どちらもゲイン400の30秒露光で、各60コマを同時撮影しました。モヤの影響かPHDも暴れるようになってきたので、思い切ってオートガイドも切っちゃいました。また、さすがにダーク減算無しではキツそうだったので、後日、ダークフレームを撮影しました。MM用とMC用を各100コマ撮影してコンポジットです。

さて、あとは「いつも通り」の画像処理です。

MMの方は、ダークを引いてからホットクール除去してコンポジットしてビニングしてメインL画像に。
MCの画像からダークを引いた後、デモザイクしてからビニングしたものをコンポジットしてRGB画像にします。

ちなみに、今回はポールマスターで極軸を合わせたのですが、まだ追い込みが足りなかったようです。
そこで、ノイズの除去が上手く行っているかどうかと、彗星追尾のコンポジットが上手く行っているかもチェックすることにします。


★位置合わせ無しでノイズと彗星の運動を見る

MMの画像60コマを「素のまま」と「ダーク減算+ホットクール除去」(以下『ノイズ除去』と表記)の双方について、位置合わせ無しの比較明コンポジットで比較してみます。

f0346040_19555512.jpg
 ※左:ノイズ除去無し 右:有り

位置合わせをしていませんので、ダークノイズは同じ位置に固定され、恒星は極軸誤差と赤道儀のピリオディックモーションが重なった動きをしてますね。
一方、彗星はそこに固有運動が加わるので、さらに複雑な動きになっています。

右の方は、上手くノイズが消えていることが分かります。



★恒星基準で位置合わせをして比較

ステライメージ6.5で恒星を位置合わせの基準にして比較明コンポジットしてみます。

f0346040_09341647.jpg
 ※左:ノイズ除去無し 右:有り


こんどは恒星が点状に写って、ジョンソン彗星は一定の方向に動いているのが分かります。これが固有運動で、普通に長時間ガイド撮影した場合に彗星だけが流れるヤツですね。一方、ノイズの方は『赤道儀の追尾エラーを逆にたどった』ような面白い動きで写っていますが、それらが皆同じ動きをしていることから、固有の素子が持っているいわゆるダークノイズだと分かります。これらはダーク減算とホットクール除去で右の画像のようにキレイに消えますが、一部消えていない『点』が見られます。恐らくはこれが「突発ノイズ」で、カメラ起因のものなのか、それとも自然現象起因(2次宇宙線の被曝とか)かは、今後検証してみる必要がありそうですね。


★位置合わせを彗星基準にして比較

さて、いよいよステライメージ6.5で位置合わせ基準を彗星の核に指定して上手く行くか、比較明コンポジットして確かめてみます。

f0346040_19594100.jpg
 ※左:ノイズ除去無し 右:有り

おおー。とても面白い絵になりました。彗星の核はまん丸になってますので、上手く位置合わせ出来ているようです。
恒星はキレイな直線になっています。ちょうど「疾走する彗星の背景の流れ」といった趣ですね。一方、ノイズは彗星の固有運動とピリオディックモーションの影響を受けてギザギザになっています。このギザギザの幅がアトラクスの機械的な追尾限界というわけですね。右の方はとても上手くノイズが消えています。

さて、ノイズの状況と彗星基準の位置合わせチェックができたので、本番の加算平均コンポジットを施してみます。


★MCのRGBとMMのLを比較してみる

加算平均コンポジットしたMCのRGB画像と、MMのL画像を比較してみます。

f0346040_20064620.jpg
 ※左:MCの60コマコンポジットRGB画像 右:MMの60コマコンポジットL画像

 MCのカラーノイズはさすがに消しきれなかったようで、MMの方が滑らかですね。また、MMの方が彗星本体が良く写っている「気」がします。


★MCのRGB画像とMM+MCのLRGB画像を比較してみる

 ちょうど、上記の左の画像をRGBチャンネル、右をLチャンネルとしてLRGB合成を試みます。

f0346040_20103238.jpg
 ※左:MCのRGB画像 右:MM+MCのLRGB画像

おおー。かなり改善して事が分かります。バックグラウンドは似たようなものですが、彗星、恒星ともにLRGBの方が明瞭ですね。
MCのカラーノイズがLRGBで軽減されるのは、LRGB合成の際に色情報にボカシが入るからです。(人間の目の特性上、輝度のボケには敏感ですが色のボケには鈍感なことを活かして、ノイズが減ったように『見せかける』のがLRGB合成の特徴です。)

というわけで・・・


・・・ででん!
f0346040_20214336.jpg

ちゃんと彗星を追尾したように写せて、
しかも(ここ重要♪)恒星像に色ズレがありません
単鏡筒+ビームスプリッターを用いたL+RGB同時撮影実験、大成功です!!

※といっても、しょぼい写りですが、今回はこれで良いんです!
ビームスプリッターが彗星に有効だと言うことが確かめられたので(笑)。


by supernova1987a | 2017-05-05 20:02 | 機材 | Comments(6)

オヤジさんのご依頼を受けて♪


★皆さん頑張りますねぇ

 ASI1600つながりで最近情報交換をしている皆様方は、それぞれ独自のアイディアをお持ちのようで、ブログを巡回するのが楽しいのですが、その内の1人、オヤジさんからご依頼を受けましたので、「ASI1600MM-COOLとASI1600MC-COOLをフリップミラーでワンタッチ切り替えして撮影できる装置」を手持ちパーツを元に試し組みしてみました。(パーツのリスト紹介だけのつもりだったのですが、実際に試し撮りしてみないと、ピントが出ないとかのトラブルが怖かったので・・・・)


★LRGB切替撮影用フリップミラーシステム

 極力、『個人の趣味』的要素のパーツは排除して、シンプルに組んでみました。

f0346040_15303672.jpg
<上記図中のパーツ名称>
 ①ビクセン フリップミラー(31.7mmアイピースホルダーは外す)
 ②BORG M42P0.75-M57変換リング 7522
 ③NEEWER マクロエクステンションチューブ・ニコン用(のうちNo3)※代用品有
 ④NEEWER マクロエクステンションチューブ・ニコン用(のうちNo1)※代用品有
 ⑤BORG 2インチホルダ-SⅡ 7504
 ⑥ZWO ASI1600MM-COOL
 ⑦BORG M42ヘリコイドT 7839
 ⑧BORG M42P0.75-M57変換リング 7522
 ⑨NEEWER マクロエクステンションチューブ・ニコン用(のうちNo2)※代用品有
 ⑩BORG 2インチホルダ-SⅡ 7504
 ⑪ZWO ASI1600MC-COOL

※上記の組み合わせの「キモ」は、③④⑨です。
ここで直視方向と直交方向の光路差を調整しています。
ちなみにM57系の延長筒はBORG純正だと結構な出費となりますが、上記のマクロエクステンションチューブは、
 M57準拠の延長リングが×3個 + ニコンFマウントがオス・メス各1個
がセットになった商品で、(私が買ったときは)この5点セットが『まさかの1136円』だったのです。
アマゾンでざっと調べたところ、現在はこの商品が見当たりません
見た感じだと、
Pixcoのマクロエクステンションチューブ ニコンFカメラ対応
が同等品の『様に』見えたのですが、仕様不明なので自信がありません。
(注:Neewerの製品でも、M57ネジとなっているのはニコン用だけで、それ以外はM60だったり色々で使えません)

ところで、
 直視方向の③+④は光路長合計が39mm
 直交方向の⑨は光路長が19mm
なので
これらをBORG純正品で置き換えるなら
③④の代わりに
 BORG M57/60延長筒M 7603(光路長40mm)
⑨の代わりに
 BORG M57/60延長筒S 7602(光路長20mm)
を使ってみても、上手くピントが出ました。

さて、この構成で、実際に組んでみると・・・・


★実際に組み立ててみた

上記のパーツを組み立てると、こんな感じです。

f0346040_16094831.jpg
 ビームスプリッタシステムに比べると相当に軽量です。

直視方向から覗いてみると・・・
f0346040_16112599.jpg
こんな感じで、向かって左側は跳ね上げたミラーのせいでケラレそうに見えますが、こちらにカメラの短辺を向ければ問題ないでしょう。ミラーの裏面とミラー回転ノブの背面がテカっているので、適宜植毛紙などを貼るべき『かも』知れません。


直交方向から覗いてみると・・・
f0346040_16142738.jpg
こんな感じです。
あきらかにミラーが小さく見えるので『ひょっとすると』周辺減光が出る『かも』知れません。

 対物側は・・・
f0346040_16165814.jpg
このように、49mmのフィルターネジが切ってあるのですが、けむけむさん情報によると、ココに49-48mmの変換リングをかませば48mm径のフィルタが使えたとのこと。

※5月5日追記:
 追加情報をいただきました。 マルミのステップダウンリング49mm→48mmでOKとのこと。
 けむけむさん、ありがとうございました




★実際にピントが出るか試してみた


主鏡移動式のVMC260Lはバックフォーカスが変幻自在なので特殊。
BORG系の鏡筒は伸縮自在で、やはり特殊。

・・・というわけで(一般的な特性と思われる)ビクセンの70EDSSに取り付けてピントが出るかテストしてみました。

f0346040_16210567.jpg
・・・といいつつ、実際には、仮組みしてキャプチャしてみるとMCかMMかどちらかのピントが出なかったり、パーツが干渉したしして失敗で、色々とパーツ交換して試行錯誤したのですが(笑)。
最初の構成図は、その結果「実用になる」ことが判明した最終解です♪

 というわけで、上記パーツの組み合わせで直視方向のMM、直交方向のMCともにピントが出ました。

f0346040_16490657.jpg

 左:MCの画像 右:MMの画像


★センタリングのズレはいかほどか

 拡大率を上げて、センタリングのズレを見てみます。

f0346040_16510184.jpg
 それぞれ200%で表示したものです。十字線がクロスしてところが写野中心なので、少しのズレはありますね。
ここは個体差が大きいかも知れませんので数値化は控えておきます。


★LRGB合成を試してみる

MCとMMの画像比較をしてみましょう
f0346040_16551711.jpg
 ※左:MC 右:MM

200%表示ですが、MMの方が圧倒的にシャープですね。

では、これらをLRGB合成してみます。

f0346040_16571079.jpg
うん。良い感じで合成できました。
色はMC、シャープさはMMの「いいとこ取り」成功です。

・・・・というわけで、オヤジさん、これで行けそうですか??


by supernova1987a | 2017-05-04 18:05 | 機材 | Comments(17)

久しぶりの『遠征』

★思えば、ずいぶんと月日が・・・

たしか、前回遠征したのは2016年の8月でした。
楽しみにしていたGW休暇もどうも天候がよろしくありません。

・・・が、ともかく今回は「遠征すること」が目的なので、
晴れてはいるものの、どうもモヤっぽい空の元、プチ遠征にでかけました。

場所は「いつもの」満濃池。
ところが、あんまり星が見えません。空全体が霞んでいる感じです。
たぶん、これだと、好条件時での市街地ニワトリの方がマシかも(涙)
しかし「ビームスプリット装置を遠征で運用してみる」という目標を達成するため一応がんばってみます。


★今回の装備は・・・・

ビームスプリット装置以外にも、suaokiの400Wh電源や、これまでよりも大型のアルミテーブルセットや、スカイメモ用の「強固な足下」などなど、新兵器が目白押し。

・・・というわけで、今回の装備は
VMC260L+ビームスプリット冷却CMOSカメラをアトラクスに
D810A+85mmF1.4とIR改造D5000+30mmF1.4をスカイメモに
それぞれ搭載してテスト撮影開始です。

f0346040_21064008.jpg
 ※・・・といいつつ、機材写真は薄明後の撤収時に撮影した物ですが


★フルアーマーVMC260L

f0346040_21074153.jpg
今回は色んな装備品が付いています。
まずは、メインパーツである「LRGB同時露光用ビームスプリット装置」ですね。

f0346040_21093370.jpg
相当重量がありますが、主鏡移動式のVMC260Lならタワミがでることも無いでしょう。



そして、自作直交ファインダーです。

f0346040_21112328.jpg
ずいぶん前に作製していたのですが、今回初運用です。天頂付近の天体を導入する際には直交型に限りますね。
ちなみに対物レンズは、ケンコーのクローズアップレンズNo5です。


今回は真面目にオートガイドをしてみます。
ガイド鏡はBORG45ED+QHY5LⅡ+PHD2での運用です。

f0346040_21175176.jpg
タワミが出るのはイヤなので微動装置は無し。
いわゆるコバンザメ方式で鏡筒のアリガタに装着しています。

さて、デジタル一眼の方は年代物のスカイメモNSに載せてノータッチガイドするのですが、三脚と微動架台を強固な物に換えました。

f0346040_21213877.jpg
まず三脚はスリックのフリュードビデオマスターⅡの脚だけを用います。定価は6万円近くしますが、耐荷重は驚異の8kg!良い三脚なんですが、なぜかアウトレットで1万円台で叩き売られています。

 実はコレ、いくらねじってもフリュード雲台が外れなかったため、もっぱら昼間の撮影用と、BORG89EDや7cm双眼鏡で観望する際の脚としてしか活用方法が無かったのですが、雲台底部のゴムの留めリングをずらしてみたら何のことはありません。大ネジで雲台を取り付けた後に台座の下から小さなネジで圧着固定してあっただけでした。

そこにK-ASTECの微動架台を装着し、そこにアリミゾ台座をとりつけました。

f0346040_21283343.jpg
これまで使用していた物とは比較にならないほど安定性が増しました♪


★・・・で、肝心の成果は??

うーん。
それが・・・あまりにも空の透明度が悪く、しかもシーイング(シンチレーション)も最悪だったのですねぇ。

でもでも、一応の成果はありました。

まずは、りょうけん座のM51子持ち銀河です。

この日のコンディションでは、ASI1600MC-COOLのゲイン400・30秒露光「一発撮り」だと、

f0346040_21333991.jpg
暗部を必死で持ち上げても、せいぜいこの程度しか写りませんでした。

ここで、ビームスプリッタを用いて撮影したMMのL画像:30秒露光×90コマとMCのRGB画像::30秒露光×90コマをLRGB合成してみると



・・・・・ででん!
(と言うほどの写りではありませんが)

f0346040_21362889.jpg
うむー、まずまずですね。
透明度が悪いため露光量が不足し、かつシーイングが悪いため星像もオートガイドも「暴れまく」ってました。また、今回の画像処理は暫定処理なのでダーク減算もしてません。

それでも、今後の可能性を感じさせる写りだとは言えますね♪


★さて・・・と

とりあえず、素材は色々と釣り上げてきたので、あとは真面目に料理しないといけませんね。
今日から当分天気が悪そうなので、ちょうど良いかも知れません。

あ、その前にダーク撮らなきゃ!!

by supernova1987a | 2017-05-01 21:44 | 天体写真 | Comments(9)

ビームスプリッタ効果検証ごっこ

★苦心の末,運用に成功した『珍パーツ』

ようやく、惑星にも星雲にも利用できることが分かった「LRGB同時露光用ビームスプリットシステム」ですが

f0346040_14514600.jpg
f0346040_02403921.jpg


そもそも、
「ぶっちゃけ、撮影の効率は良くなっているのか?」
という根本的な疑問について『検証ごっこ』してみました。

つまり、
MC単独で運用するよりも
「同じ運用時間で良い絵が撮れる」
か、もしくは
「同じ絵を撮るための運用時間が短くて済む」
というメリットが感じられなければ意味がないということですね。


★ビームスプリッタ構成図公開♪

メインパーツのビームスプリッタとフレームは新調したものの、他の部品は基本的に手持ちの『あまりパーツ』を組み合わたものです。
そのため『無理矢理感』が漂う構成ですが、そこは笑ってスルーしてください。

f0346040_17213736.jpg

 ①EdmundOptics キューブ型ビームスプリッタ(分割比50:50)
 ②EdmundOptics Tマウントビームスプリッタホルダー
 ③EdmundOptics Tマウント両オスリング
 ④BORG M42P0.75-M57変換リング 7522
 ⑤BORG M57/60延長筒S 7602
 ⑥BORG M57回転リングDX 7352
 ⑦BORG 2インチホルダ-SⅡ 7504
 ⑧ZWO ASI1600MM-COOL
 ⑨BORG M57-M36.4 AD 7522
 ⑩ケンコー ACクローズアップレンズNo3(52mm)
 ⑪BORG M57-M57ADⅢ 7459
 ⑫BORG M57-M57AD 7457
 ⑬BORG M60-M57AD 7901
 ⑭アイダス LPS-P2フィルタ(52mm)
 ⑮BORG M42ヘリコイドT 7839
 ⑯BORG M42P0.75-M57AD 7528
 ⑰NEEWER マクロエクステンションチューブニコン用(の一部)
 ⑱ZWO ASI1600MC-COOL

※あくまで暫定的に組んだだけで、実際には上記の組み合わせには複数の問題点が残っています。

f0346040_14415879.jpg

★ざっくりと効果を予測すると・・・・

 ①光束を2分割しているため、通常の撮影の2倍の露光が必要になってしまう
 ②ただし、一方の光を(MCよりも感度の高い)MMで受けるため、総露光時間は減るかも知れない
 ③MMの高解像度を活かすには、VMC260Lの焦点距離は(シーイングの影響で)長すぎる

また、昼間に実写してみた感触だと、MMはMCの約2倍の感度を有していることが分かったので、ビームスプリッタを用いて、MMとMCの同時露光を行った場合には、
MCの感度をPとすると

 (P × 1/2 ) + (P × 2 × 1/2)
  MCの運用感度      MMの運用感度

 と考えて、トータルでおよそMC単独の1.5倍の効率を有することが期待できます。



★実写で検証ごっこしてみる

先日ビームスプリッタを用いて撮影したM17オメガ星雲の画像をもちいて、ザックリと比較してみます。
比較対象は、下記の5つです

 A:MM+MCで撮影した画像、各8コマのLRGB合成
 B:MCで撮影した画像8コマのコンポジット
 C:MCで撮影した画像16コマのコンポジット(スプリッタ無しなら8コマコンポジットに相当)
 D:MCで撮影した画像24コマのコンポジット
 E:MCで撮影した画像32コマのコンポジット

それぞれ1コマに15秒露光を与えるとすると、実際の運用時間は

 A:2分間
 B:2分間
 C:4分間
 D:6分間
 E:8分間

となりますが、そもそもビームスプリッタを使わなければ「光量が2倍」になりますので、その分を補正すると

 A:2分間
 B:1分間
 C:2分間
 D:3分間
 E:4分間

と解釈した方が公平な比較と言えますね。
という訳で、今回の新システムで撮影効率が上がったと言うためには、Bは論外として、Cに勝てるかどうかがカギとなります。

さて、比較に用いた画像の共通データは下記の通りです。(ASI1600MM、MCともに)

VMC260L+自作レデューサ+ビームスプリッタ+LPS-P2フィルタ
ゲイン:400 露出:15秒 撮像温度:-15度 出力:16bitFITS


① MM+MC各8コマ VS MC8コマ 
f0346040_18400794.jpeg
 ※左:A 右:B (ピクセル等倍)

新システムの圧勝です。
・・・といっても、スプリッタ無しなら、この運用時間内でMCが16コマ撮影できるので当然ですね、
事実上、MCの「15秒露光×4コマコンポジット」もしくは「7.5秒露光×8コマコンポジット」だと解釈するべきですのでハナから勝負になりません。


② MM+MC各8コマ VS MC16コマ  
f0346040_17494848.jpeg
 ※左:A 右:C

まずは、ここがクリアすべき条件です。
要するに、「スプリッタ無しのMC単独」と「スプリッタ併用のMM+MC」で「同じ時間かけて頑張った」場合の画質比較になるからです。

・・・うむ。 まだまだ新システムが勝ってます♪
とりあえず、「撮影効率は悪化してはいない」もしくは「同じ運用時間内なら良く写る」と言えそうです。


③ MM+MC各8コマ VS MC24コマ 
f0346040_17500701.jpeg
 ※左:A 右:D

これが「本命」の比較です。
おお、予測通りの結果(この条件で、ほぼ同等の写りになる)ですね!!
正直、ホッとしました♪


④ MM+MC各8コマ VS MC32コマ 
f0346040_17502026.jpeg
 ※左:A 右:E

あ~あ。
ここまでくると、素のMCに負けちゃいましたねぇ。
要するに
「LRGB同時撮影用ビームスプリットシステム」の撮影効率は、運用時間を1/2にするほどではない、
ということです。
・・・ま、予測通りではありますが。


★(暫定的な)結論

あぷらなーとが作製した『珍パーツ』:「LRGB同時撮影用ビームスプリットシステム」を用いると

同等の画質を得るために必要な運用時間が、2/3に短縮される

ということが『検証ごっこ』されました。

「3時間かかる撮影作業が2時間で済む」とも言えますし、「1晩で2対象しか撮れない日に3対象ゲットできる」とも言えますね♪
あんまりハデさはないけれど、とりあえず めでたい♪


★ご注意 その①★
ビームスプリッタの使用により、画質の悪化は免れません。
具体的には、先日の記事で「考察ごっこ」した通り、完全無欠な光学系を用いた場合でもビームスプリッタの通過によって下記のような収差が発生するハズです。
f0346040_04493646.jpeg

★ご注意 その②★
この『珍パーツ』と撮影手法は、まだ完成していません。
例えば、プリズム部分のコバ塗りすらしていなかったり、
レデューサ部分の調整をしていなかったり

・・・近日中には調整する予定ですが、難儀しそうです(泣)


by supernova1987a | 2017-04-29 18:34 | 機材 | Comments(19)

ビームスプリッタで撮るオメガ星雲②

★ビームスプリッタで撮影したオメガ星雲は

前回の記事↓で、なんとかLRGB合成に成功したわけですが、


実はまだ未処理の画像があったので、全ての画像を投入して画像処理してみました。

f0346040_15483980.jpg
※前回紹介したように、自作『珍』パーツ:「LRGB同時露光用ビームスプリットシステム」をVMC260Lに装着して、ASI1600MM-COOLのL画像とASI1600MC-COOLのRGB画像を同時露光して、M17オメガ星雲を撮影しました。

撮影は全て、ゲイン400の露光15秒のFITSです。
市街地からのニワトリで、ダークもフラットもオートガイドも無しという超手抜き撮影です。
ただし、LPS-P2フィルタは用いています。また、MMもMCも-15度まで冷却しています。
光路長の関係で純正レデューサは使えないので、クローズアップレンズ利用による自作レデューサを併用しています。

ちなみに
「サチらない程度に露光を切り詰めた場合、そもそも段階露光は不要では?」
との持論の元、短時間露光の多数枚コンポジットにこだわってみました。
目指すのは「一見ナローバンドで多段階露光したかのよう」に見えて、実は何もしていないという画像です。
(べつに、そんなの目指す必要はないのだけれど・・・)

さて、MCで1コマ撮りだとこんな貧弱な画像ですが・・・・
f0346040_23383802.jpg
これ(MCの画像×247コマ MMの画像×275コマ)を下記のように調理してみます。

①:MMのFITS画像をステライメージ7でホットクールピクセル除去フィルタ処理
②:①をステライメージ7で2×2ソフトウェアビニング
③:②をステライメージ6で275枚加算平均コンポジット
④:MCのFITS画像をベイヤーデータのままステライメージ7でホットクール除去
⑤:④をデモザイク前にステライメージ7でビニングしてモノクロ画像にする
⑥:⑤をステライメージ6で247枚加算平均コンポジット
⑦:③と⑥をステライメージでさらに加重平均コンポジット
⑧:⑦の画像を3つに複製し
  A:ステライメージ6で最大エントロピー画像復元(3段階処理)
  B:レジスタックスでウェーブレット処理
  C:NikCollectionでHDR処理
 をそれぞれ行った後、ABCを加重平均コンポジットして「L画像」にする
⑨:⑧の画像にステライメージ6でスターシャープ処理
⑩:④をステライメージ7でデモザイクしてRGB画像にした後ビニングする
⑪:⑩をステライメージ6で247枚加算平均コンポジットして「RGB画像」にする
⑫:⑧のL画像と⑪のRGB画像それぞれについて、ステライメージ6でレベル調整とデジタル現像を行う
⑬:ステライメージ6で⑫をLRGB合成し、Lab色彩調整等々を行う
⑭:シルキーピクスで色調とトーンを微調整

ちなみに、ADCを12bitで駆動したASI1600の画像を、今回のように後から2×2ソフトウェアビニングして、さらに522枚コンポジットすると、
原理的には、
 12+log2(4*522)
 =約23bitのカメラ
 15×582/2
 =4365秒露光することに相当すると解釈しています。
(露出を2で割ったのはビームスプリッタで光を1/2に分割しているから)

これだけ奇妙な処理を施しておきながら、ダーク減算もフラット補正もしないという天邪鬼ぶりが「イタい」ですが、ネタ的には面白いですね・・・・


・・・・すると・・・



・・・ででん!!

f0346040_02403921.jpg
おお! とても良い感じです♪

これなら、まさかニワトリでの15秒露光には見えないでしょう??

と言うわけで、ニワトリでこの程度の画像を得るなら、
 ダークもフラットもオートガイドも段階露光もナローバンドもディザリングも要らない
「かもね」などという、不精者にはありがたい結果が得られました。

・・・あー。しかし、疲れた。

今度時間があるときに、ダークを撮影したら再処理しなきゃ・・・ねぇ。



by supernova1987a | 2017-04-28 06:31 | 天体写真 | Comments(8)

ビームスプリットシステムで撮るオメガ星雲

★LRGB同時露光用のビームスプリットシステムが

・・・思いの外、星雲にも有効だったので、

f0346040_14415879.jpg

今度はM17オメガ星雲を画像処理してみました。
共通撮影データは以下の通りです。

望遠鏡:VMC260L
レデューサ:自作
フィルタ:LPS-P2
カメラ:ASI1600MM-COOL+ASI1600MC-COOL
 ※自作ビームスプリットシステムによる同時露光
赤道儀:K-ASTEC改造Newアトラクス ノータッチガイド
ゲイン:400
露光:15秒
撮像温度:-15度

※ちなみに手抜き撮影なので、
 ○極軸は極軸望遠鏡で適当に合わせただけ。
 ○オートガイダーも使ってません。
 ○ダークもフラットも無し。
です(汗)

『天然ディザリング』+『短時間露光の多数枚コンポ』バンザイ♪


★ASI1600MC-COOLの一発撮り

 100コマ撮影した内の1コマです。トリミングしています。

f0346040_23383802.jpg
市街地からのニワトリで15秒露光ですから、まずまずの写りですね。


★ASI1600MMーCOOLの一発撮り

176コマ撮影した内の1コマです

f0346040_23402536.jpg
若干ですが、MCよりは良く写っています。


★それぞれをコンポジットすると・・・

 MCのカラー画像100コマとMMのモノクロ画像176コマをそれぞれコンポジットすると

f0346040_23421389.jpg
一気に微細構造が出てきますね♪
では、LRGB合成してみましょう。


★MM×176コマ+MC×100コマのLRGB

f0346040_23430213.jpg
なかなか良い感じです。
ただし、少しノッペリしているので、先日単体でも動くことを見つけたNikCollectionのシルバーエフェクトでL画像にメリハリを付けてみます。

すると・・・

・・・ででん!
f0346040_01061492.jpg
いやー、オメガ星雲って、面白い構造しているんですね。
星雲の中をいくつもの黒筋が走っていたり、いろんなウネウネした構造があったり、

・・・M8もそうですが、この手の星雲は思いっきり拡大しても楽しそうですね。




by supernova1987a | 2017-04-26 06:15 | 天体写真 | Comments(11)

本当の『ファーストライト』は波瀾万丈

★本当にやりたかったのはコレ!

先日、木星の撮影でファーストライトを果たした「LRGB同時露光型ビームスプリット装置」ですが、木星撮影以外のところにも「野望」がありまして・・・・。
それは、ズバリ
「星雲星団をビームスプリッタでLRGB同時露光する!」
という奇想天外な遊びです。

・・・という訳で、ウンウン悩みながら惑星用のシステムを星雲星団用に組み替えました。

f0346040_14393403.jpg
今回ビームスプリッタ本体に装着するのは、左から、「LPS-P2フィルタ」、「回転装置」、「レデューサ代わりのACクローズアップレンズNO3」です。というのも純正のレデューサを用いるにはバックフォーカスが長すぎますし、ビームスプリッタの直前にフィルタを付けると醜いゴーストが出そうだったからです。

さて、これらを組み上げると、

f0346040_14415879.jpg
こんな感じのメカが出来上がりました。
VMC260Lへの接続はM60のネジリングで、これが単独でねじ込み作業できるように回転装置を利用します。

・・・・ところが、この「工夫」が後に悲劇を生もうとは・・・・・。


★好事魔多し

カメラ制御用のノートPCとアトラクスを無理なく長時間駆動させるために投入した、suaoki400Wh電源

f0346040_20101991.jpg
絶好調で動きました。
これ、前面のパネルに現在消費している電力がリアルタイムで表示されるので、あとどれくらいでバッテリーが切れそうかが一目瞭然ですね。ちなみに、アトラクスの恒星時駆動では3~5W程度、満充電したノートPCへのAC供給が8~10W程度で収まってましたので、ざっくり言って30時間程度の連続駆動ができそうです♪

これ、さらにアトラクス制御用のサブノートPCに電源供給しても1晩は余裕で持ちそう。
あとは、2台のASI1600カメラの冷却用の電源としてスゴイバッテリーが1台あれば十分です。

f0346040_14514600.jpg
早速VMC260Lにビームスプリットメカを取り付け、初の星雲撮影に臨みます。

これはもう、「大勝利の予感」♪

・・・・などと思っていたら・・・。



「ドスンっ!!」

正直、一体何が起こったのか把握できませんでした。

実は、突然「ASI1600MC-COOLとASI1600MM-COOLを装着したビームスプリッタ」が「丸ごと」地面に落下したのです!

正直、血の気が引きました。

しばし、全身が硬直した後、地面に横たわるビームスプリッタを拾い上げ、緊急撤収します。
装置を軽く振ると
「カランコロン」
と嫌な音がします。

・・・ひょっとして、ここ数ヶ月の努力が水の泡か?!

★不幸中の幸い

 落下の原因は、先述の、鏡筒へビームスプリッタを接続する際の工夫である「回転装置」でした。これ、カメラ側を手に持ったまま、接続リングだけがフリーで回転するので、強固かつ迅速に接続できるアイディアだったのですが、なんと、「接続リングを鏡筒にねじ込む」作業中に「回転装置が上手く作動せず」に「接続リングが緩んだ」のですね。

 ただし不幸中の幸いで、落下場所が周囲よりも柔らかい赤土だったこと、落下体制が良かった(全パーツに均等に撃力が掛かる)ために、外観のキズと若干の光軸ズレ以外はダメージが無さそうです。ちなみに、「カランコロン」の正体は、カメラの空冷装置部分に入り込んだ土砂でした。


★気を取り直してセッティング

一度全パーツをバラして、内部に損傷が無いか確認した後、丁寧に掃除して、再度セットアップします。

f0346040_15483980.jpg

果たして、上手く作動するでしょうか?


★MMとMCで星雲を同時キャプチャー

f0346040_15230765.jpg


 M8を対象にして、プリズムの被害を調べます。(左:MC 右:MM の同時キャプチャー画面)
見たところ、ほとんど光軸のズレは無さそうですし、変な光やノイズは出ていないようです。

 大急ぎで、-ゲイン400+15秒露光で連射し、MMの画像100コマとMCの画像100コマを同時に取得してみました。(撮像温度:-15度、MMは16ビットモノクロ、MCは16ビットRAWのFITSでそれぞれ出力)



★1コマ撮りでMMとMCを比較

同時に撮像した1コマ画像を比較してみます。

f0346040_15263768.jpg
 ※左:MC 右:MM (ともにゲイン400の15秒露光一発撮り)

感覚的には、MMの方が2倍ほど感度が高く、画像も滑らかに感じますね。

では早速、コンポジットしてみましょう!


★100コマコンポジットで比較

f0346040_15295672.jpg

 ※左:MCの100コマコンポジット 右:MMの100コマコンポジット(ダーク減算無し)

おお、どちらもかなり滑らかになりましたが、若干MMの勝ちでしょうか。


 ★LRGB合成してみる

 いよいよ、仕上げです。
MMで撮像したL画像(100コマコンポジット)とMCで撮像したRGB画像(100コマコンポジット)をLRGB合成し、さらにシルキーピクスで色調などを調整してみます。

 すると・・・


・・・ででん!
f0346040_15384557.jpg
 おお!とても良い感じです。
市街地からのニワトリのため、以前遠征してD810A撮影して400コマコンポジットした画像には少し負けているようなきもしますが、これはこれでなかなか見応えがありますね。


※4/24追記※

先日、単体でも稼働できることが分かったNikCollectionのHDRを活用すると、こんな↓方向性もアリですね。
ちと画質が荒れますが、星雲内のウネウネがハンパないです♪

f0346040_21293302.jpg
ちなみに、レデューサ代わりに装填したACクローズアップレンズNo3ですが、画像を実測してみた結果、純正レデューサ(1860mm)よりも少し長めの約1950mmになっていることが分かりました。口径が260mmですから、F値は11.4→7.5まで明るく出来たことになります。青にじみが発生していますが、クローズアップレンズによるものかビームスプリッタによるものかはまだ不明です。


★という訳で結論!

ビームスプリッタで生じた「負の球面収差」とキャンセルするよう「正の球面収差が残っているタイプ」のクローズアップレンズを用いてみたり、ゴースト軽減のフィルタ配置にしたり・・・が功を奏しているかどうかは不明ですが、とりあえず、あぷらなーとの「珍パーツ」:「LRGB同時露光用ビームスプリット装置」は、惑星の撮影でも星雲の撮影でも実用になることが分かりましたっ!!

めでたい♪

※ダークの減算とか諸々の真面目な画像処理は、これからゆっくりと・・・。

by supernova1987a | 2017-04-24 15:44 | 機材 | Comments(8)

「ビームスプリットシステム」ファーストライト!

★ファーストライトのチャンス到来!

光学実験用のキューブ型ビームスプリッタを用いて作成した「LRGB同時露光システム」、天文リフレクションズ編集部さんが言うところの「ド変態システム」(笑)ですが、いよいよ稼働させるときがやってきました。


★その前に『外堀』を埋めておかなきゃ

惑星や月面を用いて「ファーストライト」したいのは山々ですが、急いては事をし損じます。

ちなみに、撮影前に想定されていた困難な要素は下記の通り

①キャプチャフレームレートが全く上がらない
 手持ちのノートパソコンの性能が追いついていないようで、SharpCapを二重駆動させた場合に下手をするとフレームレートが0.5FPSという悲惨なことになってしまってます。これでは大量スタッキングが必要な惑星写真には使えません。

②木星の高度がイマイチで大気の分散の影響を受けてしまう
 特に深刻なのがモノクロカメラであるASI1600MMの方で、色情報が無いために原理的に色ズレ補正が不可能です。またASI1600MCの方はRGBアライメントなどで色ズレ補正できますが、本来はウエッジプリズムなどを用いて撮影時に大気の分散を補正しておきたいところです。

③システムが巨大化したのでVMC260Lに取り付けるのが難儀する
 アメリカンサイズのアイピースホルダはもちろんのこと、2インチホルダでもグラグラして不安定です。これではピント合わせどころではありませんし、最悪の場合脱落事故にもつながりそうです。

④赤外線に感度があるため、その影響で像が甘い
 ASI1600シリーズは、MC版もMM版もクリアフィルタ仕様のため赤外線に感光します。そのため赤外線の影響で解像度が低下したり色がおかしくなったりします。

これまで「中途半端」なシステムを組んで痛い目にあってますので、今回は真面目に問題点をつぶしておきます。

★外堀①まともなノートPCに換える

SharpCapでASI1600をダブル稼働させる場合、ATOMとかAMD-E2とかの格安CPUだと処理が追いついてないようでフレームレートが落ちて使い物になりません。
そこで、今回はまともなスペックのノートPCに換えました。
 CPU:Corei5
 メモリ:8GB
 ストレージ:SSD256MB
のDELLノートPCを投入します。
さらに、MMはUSB3ポート、MCはUSB2ポートにそれぞれ分けて接続してUSB周りでデータが詰まらないようにしました。
その結果、800×600のROIならRAWデータのSer動画でもMMで50FPS、MCで25FPSで同時撮影が可能となりました。

・・・もっと速くノートPCを買い換えておけば良かった。
7~8万円の比較的安いノートPCではありますが、5万円未満の格安ノートとは処理速度がまるで「別世界」です。


★外堀②大気分散の補正機能を実装する

だいぶ前に入手していたのに一度も使っていなかったZWOのADC(ウエッジプリズム装置)をビームスプリッタの手前に装着しました。
実は、ビームスプリッタで光路分割する前にADCで分散補正するところがミソでして、この手法ならMCのキャプチャ画面を見ながら分散補正方向を定めれば、自動的にMMのL画像にも大気の分散補正がなされるいう理屈です。


★外堀③ネジ系のリングのみで接続する

アイピースホルダでは強固に固定できないのでM60-M57変換リングなどを用いて直接接眼部にシステムを装着する形式にしました。
この場合、装置をくるくる回しながら装着するのでは面倒くさい上に、接続作業中のミスで脱落も考えられるので途中に回転装置を入れ、望遠鏡側のリングが独立して回転するように工夫しました。

f0346040_00594656.jpg
 ADCもアイピース固定用のネジを外してTネジでビームスプリッタに直結して剛性を高めました。


★外堀④IRカットフィルタを装填する

 色々と悩んだ結果、ASI1600カメラ本体に直接IRフィルタを装着しました。(ま、これを見越して以前IRフィルタを2個買ってたわけですが・・・)
ASI1600シリーズには本体へのフィルタを装着するための専用リングが添付されているのでそれを用いて31.5mm径のIRカットフィルタが取り付けできます。サイズ的にケラレが生じそうですが、そもそも惑星撮影ではROI(クロップ)を用いるので影響は無いでしょう。

f0346040_01041969.jpg
★対惑星用ビームスプリットシステム完成

 以上の改良で、こんなシステムになりました。

f0346040_01064161.jpg
接眼部側から、
 ADC→ビームスプリッタ→IRカットフィルタ→カメラ
となっています。

結構巨大で相当に重たいシステムになっちゃいました。


★いざVMC260Lで実写!!

こういう重たい装置を取り付ける際には、VMC260Lやシュミカセなどの主鏡移動方式の接眼部は有利ですね。ドローチューブに可動部分が無いために重量級の装置をとりつけてもガタが出ません。

・・・と言うわけで、VMC260Lにビームスプリットシステムを装着して実写に取りかかります。

f0346040_01111378.jpg
ノートPCの処理能力が上がったおかげで、SharpCapのダブル駆動でもまったく画面が止まりません!


・・・こ、これは「行ける」のでは??

f0346040_01131054.jpg
上記のキャプチャ画面を見れば分かるとおり、
ASI1600MCは24.4FPSでASI1600MMは55.3FPSで同時露光できて、
しかもほとんどコマ落ちしてません。


★キャプチャ画像そのままだと

f0346040_02503213.jpeg
 ※左:MC(ゲイン139 露光41ms)  右:MM(ゲイン139 露光18ms)
  VMC260L直焦点( 3000mm F11.4  ) バーローレンズなどは一切無し。

シーイングはあまり良くありませんでしたが、1コマ撮りとしてはまずまずの写りですね。
早速、AutoStackert!2でスタッキングしてみましょう。

★スタック+ウェーブレットすると・・・

MCのカラー画像は2000コマのうち良像25%を、MMのモノクロ画像は4000コマのうち良像25%をスタッキングしてみました。
さらに、それぞれのスタック画像をレジスタックスにかけてウェーブレットしてみます。

すると・・・・
f0346040_02560378.jpeg
  ※左:MC 右:MM

おお!
とても良い感じです♪

よくみると、かろうじてMMの方が解像度が高く見えますね。
(期待したほどでは無いですが・・・・)


★LRGB合成して仕上げると・・・

MMのL画像とMCのRGB画像をLRGB合成します。
すると・・・・


・・・ででん!

f0346040_03001228.jpeg
 ※左:MCのみで画像処理 右:MMとMCのLRGB合成

ああ、こうしてみるとハッキリと差が分かります。
やはりMMを用いたLRGB合成の方が解像感が高いですね。


★というわけで・・・・

数ヶ月にわたる壮大かつ無謀なプロジェクト、
「LRGB同時露光用ビームスプリットシステム」
完成です♪

f0346040_03075524.jpg
当初懸念していたビームスプリッタによるゴーストや負の球面収差発生についても(惑星撮影に関する限りは)心配なさそうです。


あとは、数をこなしつつ良シーイングを待つのみですね♪

P.S.
とりあえず、高価な部品達がゴミにならなくて、良かった良かった♪

by supernova1987a | 2017-04-17 03:16 | 天体写真 | Comments(4)


タグ
最新の記事
記事ランキング
ファン
ブログジャンル
画像一覧
外部リンク