あぷらなーと


あぷらなーとの写真ブログ
by あぷらなーと
S M T W T F S
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
あぷらなーと
「自然写真大好き」
HNあぷらなーと が

いろんな写真ネタを
のんびり語ります。

気合い入れすぎると
続かないので、
「ぼちぼち」いきます。

生息地:香川・徳島
カテゴリ
最新のコメント
> Gさん おお!SI..
by supernova1987a at 10:10
ありがとうございました。..
by G at 09:23
> にゃあさん 先..
by supernova1987a at 00:49
> らっぱさん は..
by supernova1987a at 00:39
> にゃあさん 焦..
by supernova1987a at 00:32
> kem2017さん ..
by supernova1987a at 00:23
何気に読み過ごしたのです..
by にゃあ at 09:07
>焦点内外像がちゃんと「..
by らっぱ at 18:50
焦点内外像って、どこで言..
by にゃあ at 17:46
> あの・・・み、皆さん..
by kem2017 at 17:25
以前の記事
お気に入りブログ

タグ:ASI1600MM-COOL ( 30 ) タグの人気記事

1キロ手前から「お花見」


★念願の・・・・

なんやかんやで徳島から香川に転勤した結果、通常期は「日月が連休」(!!)という夢のような勤務体系になりつつあります。
(これまでは月が休日、その他週2日が半休という体系でした。)
連休の良いところは、なんといっても遠征しても翌日に休息できることですね。
これなら、徹夜で天体観測しても体調が崩れることもなさそうです。


★しかし肝心の天候は・・・

せっかくの休日でしたが、あいにく天候は曇り・濃霧・小雨の繰り返しで月さえ見えそうにありません。
また満開の桜も光が良くないので冴えない写りになりそう。

・・・こんな日は機材の調整に限りますね。


★1km先にある丸亀城の桜を・・・

「扇の勾配」としてその石垣の美しさが有名な丸亀城は、桜の名所でもあります。
しかし天候が悪いので出かける気にもならず、1km手前にある実家からBORG89EDを使って「遠隔お花見」することにしました。

先日、後先考えずに(無謀なる挑戦として)組み上げたビームスプリッターシステム↓で・・・・

f0346040_21281513.jpg
ASI1600MM-COOLとASI1600MC-COOLの同時露光。約1km遠方の丸亀城を狙います。


★ASI1600MCの一発撮りでは

f0346040_15433167.jpeg
 ※BORG89ED直焦点(600mm)+ASI1600MC-COOL ゲイン139 露出4ms

さすがに600mm+マイクロフォーサーズではフルサイズ換算で1200mmの超望遠になりますので、でっかく写りますね♪
赤外カットフィルターを付け忘れたので赤外線の影響で発色が悪かったりモヤッとしているのはご愛敬。

★MMとMCを比較する

 同時露光したMCのカラー画像とMMのモノクロ画像を200%拡大で比較するとこんな感じです。

f0346040_15484438.jpeg
 ※左:ASI1600MC 右:ASI1600MM (画像処理無し)

ほぼ水平に向けての撮影ですので、大気がユラユラしており、シーイングは良くありませんが、かろうじてMMの方がシャープであることが分かります。


★惑星撮影の絶好の練習になる?

あまりシーイングが良くない素材なので、次の機会に挑戦予定の「ビームスプリット・LRGB同時露光システム」を用いた惑星撮影の画像処理練習になりそう。
・・・という訳で、少し画像をいじってみます。

まずは、MMのモノクロFITS画像32コマをAutoStackert!2でスタッキングします。
画面全体が波打つようなシーイングでしたので、良像40%で切ります。

f0346040_23041729.jpeg
※ちなみにモノクロのFITS画像をスタッキングするときはAutoStackert!のカラーメニューから「モノクロ」を選択しておくことが重要です。
そうしないと、カラーベイヤーだと勘違いしてモザイク状の偽色まみれ画像が生成されてしまいます。

出来上がったスタック画像はTIFFに落として、レジスタックスに読み込み、ウェーブレット処理を行います。

f0346040_23074305.jpeg
さらにステライメージで軽くアンシャープマスクをかけます。
すると、モノクロ画像の解像度が飛躍的にアップしました。

f0346040_23091704.jpeg
 ※左:スタック直後 右:ウェーブレット+アンシャープマスク適用後

そして、MCで撮影したカラー画像をRGBチャンネルとしてLRGB合成をしてみます。

すると・・・・

・・・ででん!!
f0346040_23112588.jpeg
 ※左:MCの画像 右:MMのL画像とMCのRGB画像のLRGB合成

おお!とても良い感じです♪
相当にシャープになりました。

他の場所でも比較してみます。

f0346040_23141646.jpeg
石垣のディテールも出てますね。1km先の画像とは思えません♪
あ、人物がぶれたようになっているのはスタッキングの宿命ですのでしかたありません。

f0346040_23133957.jpeg
けっこう素晴らしい解像度になりました。
松の葉や芝生が1本1本分離しているかのように見えますね。
風に揺れていた桜はイマイチですが、タイトル通り「1キロ手前からお花見」大成功です♪

PS 赤外線の影響で発色が悪いのでIRカットフィルタを付けて撮り直そうとした矢先、雨が降ってきたので撤退。
・・・残念。

by supernova1987a | 2017-04-10 23:21 | 機材 | Comments(11)

最後の1ピース

★フィルター強化作戦の最後の1ピースは

なんだかんだで、結局フィルターワークに「も」走ることに決めたASI1600MM-COOLなのですが、最後の1ピースがようやく届きました。

f0346040_22372311.jpg
早速開けてみましょう。

f0346040_22380877.jpg
はい。
OⅢのナローバンドフィルターでした♪

★早速、ホイールに装填してみる

f0346040_22391790.jpg
1つだけ欠番があった5つの席がOⅢの到着で全部埋まりました。
これで、「ノーマル」「光害カット」「Hαナロー」「SⅡナロー」「OⅢナロー」の5種類の味が楽しめそうです♪

f0346040_22411981.jpg
装填完了♪

★早速試写と行きたいところでしたが・・・

今回のお休みは(本業とは別に担当している)某高校男子応援部の指導日だったのですが、本業が忙しかったために4ヶ月ほど私(コーチ)がサボっていたのが災いして、練習後に体がボロボロになっちゃいました。

ちなみにアップや筋トレから型の練習まで(お手本となるように)部員達と一緒にこなすのが「コーチモード」の あぷらなーと の流儀で、
「こんなオッサンに負けるのかぁ?」
と檄を飛ばすのが好きなのですが、今回は夏の「シーズン」から数ヶ月経って筋力が衰えているので、まあ、苦しいこと。
(・・・片手腕立て伏せや片足スクワットが、たったの10回すらできなくなっていることには大ショック。)
これは、もう手足にウエイトつけるどころの話ではありません。
やはり、継続的に体は動かしておかないと老化の波には勝てませんねぇ。

おまけに、部員達から
「自主練するので、お手本動画ください」
との申し入れがあって、急遽自分をビデオ撮影することに。
「え?このコンディションの俺を手本にするの?体も出来上がってないよ?」
と言いつつ、しぶしぶ許可。

・・・・昔は先輩後輩間で、いわゆる「一子相伝」的に見よう見まねで伝承したものだけど、これが「今風」かぁ・・・。
まあ、確かに何度も見ながら練習出来ますしねぇ。・・・あまり手本にして欲しくない動画でしたが、まだ部員には「違い」が分からないはずなので良しとしましょう。

・・・・というわけで、たぶん明日は足腰が立たない状況で本業にいそしむことになりそうなので、天体観測は諦めて、おとなしく寝ることにしました。
(反省して、普段から多少はトレーニングすることにします)



by supernova1987a | 2017-02-13 23:08 | 機材 | Comments(10)

実写できないので気分だけでも・・・

★ASI1600MM-COOLを活かすため

早速Hαのナローバンドフィルタなどを使ってみたかったのだけど、あいにくの悪天候なので憂鬱。
せめて気分だけでも・・・と思い、遠征用を想定して機材を組んでみた♪

想定したのは、赴任地のベランダに持ち込むか、気軽に遠征するか、いずれにしても最小限の機材で臨むケース。

★魅惑のフィルターホイール

f0346040_00035969.jpg
先日購入したZWOのフィルターホイールにフィルターを色々とセット。
ちなみに5枚セットできるタイプのホイールなので
 1番:IR/UVカットフィルタ
 2番:ケンコーの光害カットフィルタ
 3番:Hαナローバンドフィルタ
 4番:SⅡナローバンドフィルタ(あれ?いつの間に?)
 5番:欠番(なんだか近日中にOⅢとか入りそう・・・)
などを装填。

うーん。なんだか、テンションが上がりますね♪

★BORG89でコンパクトに組むなら

手持ちのパーツをゴソゴソ出してきて・・・・
f0346040_00084694.jpg
 左:BORG純正フラットナー+M57回転装置
 中:オフアキ装置+ヘリコイド
 右:フィルターホイール

この組み合わせでなんとかなりそう。
これをBORG89ED+V-Power接眼部に取り付けてみることに。

★仮組み決行
f0346040_00110658.jpg
おお。なかなか かっちょええ ではないですか。
BORG89EDの焦点距離600mmなら、ASI1600MMの解像度も無駄にならないかな??
ディザリングは無理だけど、手持ちのGPDはオートガイド対応版なので、オフアキも行けるかな??

・・・・ともかく、休みの日に晴れて欲しい(涙)


by supernova1987a | 2017-02-08 06:00 | 機材 | Comments(6)

ベイヤー素子は悪いことばかりじゃない?

※だいぶブログ更新をサボっていたので、今回の記事の前半はこれまでのまとめです。

★そもそもMMを追加購入したのは・・・
ASI1600MC-COOLに加えて、ASI1600MM-COOLを購入したのには色々な目論見があったわけですが、その内の一つに
「ベイヤー素子のMCよりも非ベイヤー素子のMMの方が解像度が高いはず」
というものがありました。

★ベイヤー型で撮影すると・・・
※以前VBAで組んだベイヤー素子シミュレートプログラムに若干のバグがあったので、再処理。

f0346040_22094029.jpg
簡単なシミュレーションの結果、左のような天体があったとして、中のようなベイヤー配列(GRBG型)の撮像素子で撮影すると、右のようなRAWデータ(ベイヤーデータ)が得られる事が分かりました。

このRAWデータを元に、R,G,B各素子ごとのデータに色を付けてみると、
f0346040_22123972.jpg
こんな感じになります。当然ですが、スカスカですね。

これを普通にRGB合成すると・・・

f0346040_22135998.jpg
こんな画像になります。
イメージ的には、ちょうどテレビやモニターをルーペで拡大したような感じですね。

さすがに、これでは汚いので、先ほどのRGBデータの隙間を補完処理で埋めると
f0346040_22175012.jpg
こんな感じになります。

最後に、これらをRGB合成すると

f0346040_22223086.jpg
このような綺麗な画像になります。
実際にベイヤー素子を持つカメラで撮影したRAWデータを『現像』処理(デモザイク処理、ディベイヤー処理)した場合は、およそ上記のような処理が現像ソフト内でなされていると思われます。

★モノクロカメラで撮影すると

ASI1600MMなどのモノクロカメラの場合、撮像素子にカラーフィルタがついていませんのでベイヤー処理の必要がありません。
たとえば、上記のテストモデルの場合、撮影したRAWデータが、いきなり
f0346040_22322412.jpg
こんな画像になるため、『現像』の必要が無いわけです。

また、デモザイク時の補完処理が入りませんので、素の解像度がそのまま反映される点もメリットです。
カラーカメラで撮影した画像をモノクロ処理した場合と、モノクロカメラで撮影した場合を比較すると、例え画素数が同じだったとしても、下記のように解像度の大きな差が生まれます。
f0346040_22395835.jpg
 左:カラーカメラで撮影してモノクロ化したシミュレーション
 右:モノクロカメラで撮影したシミュレーション


★昼間の風景で比較すると

実際に、昼間の風景で撮影して比較してみた場合でも、まさにシミュレーション通りの結果が得られました。

f0346040_22504030.jpg
 ※左:BORG60ED+ASI1600MC-COOL
 ※右:BORG60ED+ASI1600MM-COOL

等倍以上に拡大すると、圧倒的にモノクロの方がシャープなことが分かります。


★ところがどっこい

実際に星雲などを撮影して比較すると、カラーでもモノクロでも、その解像度にほとんど差が無いのですねぇ(泣)
色々考察した結果、主たる要因は2つありまして、
VMC260L(1860mm)直焦点撮影の場合
 ①そもそもシーイングの影響で撮影前に対象がボケている
 ②ガイドエラーで画像がブレている
の2点により、モノクロカメラの解像度は無駄になっていると結論づけられました(涙)

★結局シャープになったのは

というわけで、モノクロカメラの導入で「飛躍的にシャープ」になったのは、
なんと「ノイズ」だけ!!
という大爆笑の結果になりました(笑)

★それならば、逆転の発想で・・・・

ようやく本題です♪
さて、下記の画像、どちらがお好きですか??

f0346040_23122751.jpg
これ、どちらもVMC260L+ASI1600MC-COOLでゲイン400+2秒露光で撮影したM42の中心部です。
コンポジットもノイズ処理も一切無しの素のデータです。

しかし、明らかに右の方がノイズが少なくて滑らかですね。
一体何が違うのでしょう??

実は、右の画像はモノクロカメラで撮影したデータを
「あえて」ベイヤー現像したものなのです。
一応GRBG型を選びましたが、そもそもフィルターが存在しませんので無意味です。
本来なら、ベイヤー処理の弊害で解像度が低下するはずなのですが、
 ○肝心の天体自体がシーイングの影響でボケボケ
 ○各種ノイズはシーイングの影響を受けないのでバリバリシャープ
という現状なら、いっそのことデモザイクしてノイズの解像度を下げてしまえ!
という「お遊び」です。本末転倒な処理ではありますが、緊急用としてノイズを滑らかにする効果はありますね♪

★何が言いたいかというと・・・

シーイングの影響が大きい環境下では、一概にベイヤー素子が悪いとは言えず、むしろノイズ低減には寄与しているとも解釈できますよ~。
ということでした♪

(注)当然、下記の場合はモノクロカメラにメリットがあります。

 ①焦点距離が短い場合に解像度を上げる
 ②シーイングが良い場合に解像度を上げる
 ③そもそも感度が高いことを活用する
 ④G以外の解像度(RやB)を上げたい(ベイヤーはGだけ解像度が高い)
 ⑤フィルターワークを活用する場合

PS.
あーあ、この休日も2夜連続で曇り+雨・・・・・


by supernova1987a | 2017-02-06 23:30 | 機材 | Comments(4)

復活の狼煙?

★お仕事も落ち着いてきましたので
そろそろ天文の世界に復帰したいのですが、
色々と考えていることがあったので、少しずつやっつけていきたいと思います。

★これからやってみたいこと

 ①ノイズについての「考察ごっこ」
 ②解像度とノイズの妥協点探し
 ③MCとMMのツインシステムの始動
 ④MMのフィルターワーク事始め
 ⑤APTの運用実験
 ⑥光跡途切れとイーブンオッドコンポジット法の検証
 ⑦大気の分散による色ズレの補正実験
 ⑧赤外線撮影による星雲の透過実験
 ⑨偏光フィルタの利用によるシンクロトロン輻射の検出
 ⑩LEDによる光害への対策

あかん・・・。やりたいことだらけで、こりゃ1年がかりですなぁ(汗)
まあ、どれだけできるか極めて怪しいですが、はじめに宣言しておかないとサボりそうなので(笑)。

①ノイズについての「考察ごっこ」

 昔の勘が蘇ってきたので、少し真面目に考えてみようかと。
ちなみに、若かりし頃は、約40画素(40万では無く、だだの40)の検出器で天体の撮像めいたことをやっていました。
ただし、(デジカメに例えるなら)1画素の大きさが畳2枚分くらいあるという超巨大なヤツですが。・・・で、それで検出していた天体というのが暗いのなんのって、光の粒(※)が1時間に1粒しか飛んでこなかったり、下手すると1年間で1粒しか飛んでこなかったり、という難儀な対象です。それをがんばって『写す』のですね。
・・・で、ショットノイズの正体は、そもそも光子がやって来る頻度のバラツキによるものだとの仮定の元、色々考察ごっこしてみようかと・・・。
(※実際は、フォトンばかりではなく、プロトンだったり他の原子核も飛んで来ますが、これらはバックグラウンドノイズ扱いなので・・・)


②解像度とノイズの妥協点探し

どうやら、シーイングの影響やら何やらで、ASI1600MMの解像度は活かせそうにないので、じゃあ、解像度を犠牲にしてノイズを減らす方向性を探ろうかと。
その第一歩は早速ゴソゴソ始めました。
「えっ?モノクロカメラでベイヤー現像?」
とか、アヤシいことを楽しんでみようかと。


③MCとMMのツインシステムの始動

BORG60ED2本を使って、せっかく構築したMMとMCのツインシステムですので、早く実写しなきゃ・・・という訳です。
輝度データをASI1600MM-COOLで撮像すると同時に、カラー情報をASI1600MC-COOLで撮像するという作戦ですね。


④MMのフィルターワーク事始め

別に「いわゆるナローバンド」に走るつもりは無いのですが、Hαだけはナローで得たいので、フィルターホイールやらなにやら買い込んでしまいました。
もう少しだけ買いそろえるものがありますが、色々と勉強してみようかと・・・。


⑤APTの運用実験

インストールだけして放置していたAPTですが、最近、にゃあさん や けむけむさん や オヤジさん が本格的に参戦したようで、居ても立ってもいられず・・・。
プレートソルブとかディザリングができれば良いなあと夢想中。K-ASTEC改造アトラクスが難しいなら、サブ赤道儀のEQ6PROで運用しても良いかも・・・。


⑥光跡途切れとイーブンオッドコンポジット法の検証

2013年に突然ひらめいた「イーブンオッドコンポジット法」は、理論的に回避できない「比較明コンポジットによる光跡途切れ現象」を本質的に解消するための突破口として自信満々だったのですが、一般のデジカメだと画像処理エンジンがジャマして、理論通りに上手くいきませんでした。(例えるなら、補正が効き過ぎてしまう状況)・・・なので、素のデータ(に近いもの)が得られる冷却CMOSカメラで、この手法の有効性を検証ごっこしてみようかと。


⑦大気の分散による色ズレの補正実験

惑星撮影はもちろんなのですが、長焦点のVMC260Lでは星雲撮影ですら、大気によるプリズム効果で光が分散してしまって色がズレる現象に悩まされています。
大気の分散を打ち消す(逆方向に分散させる)プリズムは入手したので、実戦テストをしてみたいなあと。


⑧赤外線撮影による星雲の透過実験

明るい星雲の中心部がサチってしまい、恒星がうまく見えないなら、いっそのこと赤外線で透過しちゃえ、というお遊びです。
学術的には無意味ですが、赤外線フィルタ+MMでL画像、光害カットフィルタ+MCでRGB画像、それらをLRGB合成とかやってみたいです。


⑨偏光フィルタの利用によるシンクロトロン輻射の検出

かに星雲などの超新星レムナントの中には、中心星である中性子星の影響で強い磁場が発生し、シンクロトロン輻射が起こっているものがあります。シンクロトロン輻射の特徴として強い偏光が挙げられますので、偏光フィルタでコイツを検出できると楽しいなあ・・・などと。


⑩LEDによる光害への対策

輝線スペクトルを持つ蛍光灯やナトリウムランプと異なり、連続スペクトルを持つLED照明の場合は光害カットフィルタでもその影響を排除できません。
・・・・が、これを回避できそうなアイディアを思いついたので(たぶん失敗しますが)実験してみようかと・・・。



★上記の内一体どれだけが・・・
実現できるか分かりませんが、これだけ遊べればASI1600MM&MCコンビも無駄な出費では無かったと自己満足できるでしょう(笑)。
あ、⑩は理論的にASI1600系では無理ですのでASI174MCを用いる予定です。


<お約束>
何度も言いますが、現在のあぷらなーとは天文の素人なので、厳しいツッコミは無しの方向性で、お手柔らかに・・・。
ええと、実は本業では大学入試対策の講義で教壇に立ってますが、担当の専門科目は(意外なことに)入試現代文ですので(爆)


by supernova1987a | 2017-01-30 23:47 | 天体写真 | Comments(11)

少しだけ現実逃避して夢想

★今は本業が忙しくて・・・

まあ、職業柄この時期は毎年そうなんですが、
身動き取れません(涙)。

・・・で、しばらくは実際に撮影できそうにもないのですが・・・

★次の一手に向けて・・・

小物を色々とポチってしまってたヤツが、届いていました。
現実逃避がてら、開封してみることに♪

『小物』とは何かというと・・・

・・・ででん!
f0346040_02510487.jpg
ああ、魅惑的な光を放つ色んなフィルター群♪
・・・でも
「あ、結局、あぷらなーともナローバンドに走っちゃうんかいっ」
とか思わせておいて、ちと違うんですね。


★フィルターその①
f0346040_02530717.jpg
ZWO純正の(ASI1600MMに最適化されているという触れ込みの)RGBセットです。
そのセット内容は、
 ☆UV/IRカットフィルタ
 ☆Rフィルタ
 ☆Gフィルタ
 ☆Bフィルタ
というわけで、モノクロ冷却CMOSカメラASI1600MM-Coolにコレを使うと、撮影時にジャマになる赤外線と紫外線をカットしたり、RGB分解撮影したりできる。


★フィルターその②
f0346040_02570496.jpg
ZWO純正のIRカットフィルタです。
こちらはMMの方ではなくMCの方に使う予定。
ASI1600MC-COOLは発売当初のアナウンスと異なりIRカットフィルタではなくARフィルタ装着仕様だったので、LPS-P2などの光害カットフィルタを使わない月面撮影や惑星撮影に使おうとすると、どうしても赤外線の影響を受けてしまいます。・・・で、その影響を排除しようというわけですね。


★フィルターその③

f0346040_03012410.jpg
オプトロンのHαナローバンドフィルタです。
・・・高いので、あれほど「手を出さない」宣言していたのに、とうとうポチってしまいました。

ちなみに、(Hα線を中心としてどの程度の幅の波長を透過するかを示す)半値幅が12nmの製品なので、ナローバンドフィルタの中では相当に安価な部類に属します。

本来ならば、コイツに加えてOⅢフィルタとかSⅡフィルタとかHβフィルタとかを組み合わせてギンギラギンの星雲を撮るのが筋でしょうが、当面は「自然な描写」を狙うのを目標として、ASI1600MMのL画像をHαで撮像して、星雲のコントラストを上げるという算段。


ああ、早く実写で試してみたいものですが、
本業が忙しい今は、魅惑的なフィルターを机の上に広げて眺めるだけでも幸せ・・・・。


by supernova1987a | 2017-01-24 06:08 | 機材 | Comments(4)

月夜の楽しみ?検証ごっこ③


ゲインと露光時間にまつわる「検証ごっこ」第3弾です♪

★短時間露光のデータを見ていると・・・

あらためてシーイングの影響を受けていることを実感します。
以前の記事↓で
シンチレーションにより、星が不規則に動き回る様子をチェックしてみましたが、今回は星の位置では無くて変形の様子を見てみます。

ゲイン400+0.5秒露光を4秒間連写する間の星像の変形は下記の通りです。
f0346040_23000881.jpg
いやー。ハデに変形してますなぁ。
ちなみに4秒露光の場合はこれらが積算されて写っていることになるので、ボケボケの像になるのも仕方ありませんね。

では、変形していつつも0.5秒露光の位置合わせコンポジットで多少なりともラッキーイメージング的な効果は得られるのでしょうか?

f0346040_23163386.jpg
 左:ゲイン400+4秒露光
 中:ゲイン400+0.5秒露光×8枚加算コンポジット(位置合わせ無し)
 右:ゲイン400+0.5秒露光×8枚加算コンポジット(位置合わせ有り)

位置合わせをした右の星像が若干シャープになったような「気も」しますが、大差ないですね。
むしろ、ダーク引きもホット&クール除去処理もしていない素の画像を処理しましたので、コンポジットの最中に「天然ディザリング」された結果、右のノイズが非常に少なく見える点はメリットと言えましょうか・・・。

ノイズが・・・ノイズが・・・・ノイ・・・

・・・んっ?!
よく見ると、
真ん中の画像だけ変だぞ!!

分かりましたでしょうか?
ちと中心部を拡大してみますね。

f0346040_23252326.jpg
  左:ゲイン400+4秒露光 右:ゲイン400+0.5秒露光×8枚加算(位置合わせ無し)

位置合わせ無しで加算コンポジットした方は、至る所に「黒いポツポツ」が出てる!

ぎゃー!
なんだこりゃ?

以前見つけたクールピクセルだと判断するのは簡単ですし、ステライメージのクールピクセル除去を使えば一発で消えるんですが、どうも腑に落ちません。
だって、ほんとうにクールピクセル(デッドピクセル)なら、左の4秒露光の画像にも現れないと変です。

・・・・これは謎です。
ここまできて、ついに「短時間露光+多数枚コンポジット」の致命的弱点を見つけてしまったのか??
うーむ。今回ばかりは、仕組みを推測することすら不能。・・・・降参です(涙)。

ま、実害はほとんどなさそうですが、気色悪い。

行き詰まったので、以下、続きません(汗)

by supernova1987a | 2017-01-15 22:07 | 天体写真 | Comments(8)

月夜の楽しみ?検証ごっこ②

ZWOの冷却CMOSカメラASI1600MM-COOLについて
ゲインや露光を変えた場合の星雲の写りについて「検証ごっこ」の続きです。

★対決③ゲインと露光の両方を変えた場合

 ゲイン200+16秒×1コマ
  VS
 ゲイン400+0.5秒×1コマ
  VS
 ゲイン400+0.5秒×32コマ加算

を比較してみます。
f0346040_22260356.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+0.5秒露光

当然のことながら右の方が暗くなります。また、シンチレーションの影響で星像がいびつに変形していることが分かります。
また、ゲイン400のままだと4秒露光程度でトラペジウムはサチってしまいますが、左はゲインを200まで下げているので16秒露光でもサチっていません。前回の記事の通り、この設定はゲイン400なら約1.6秒露光に相当するからです。

次にゲイン400+0.5秒露光のコマの輝度値を4倍に処理してみます。
f0346040_22295897.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+0.5秒露光(レベル調整)

だいたい同じくらいの明るさになりましたが、当然ザラザラです。

次に0.5秒露光のコマを4コマ加算コンポジットしてみます。

f0346040_22422254.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+0.5秒露光×4コマ加算

これでレベル調整無しでもほぼ同じ明るさになりましたが、画像の滑らかさはG200+16秒の方が圧倒的に上ですね。
ちょうど前回比較したゲイン200+16秒露光とゲイン400+2秒露光の比較と同様の結果となりました。

では、0.5秒露光のコマを32コマ加算コンポジットしてみましょう。
f0346040_22325820.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+0.5秒露光+32コマ加算(レベル調整あり)

この場合、4コマ加算した段階で目標の明るさに達してしまいますので32コマ加算処理の後、レベルを下げています。
いかがでしょう??
ほとんど両者の見分けがつかなくなりました。

最後に、それぞれデジタル現像して暗部を少し炙り出してみます。
f0346040_22482311.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+0.5秒露光+32コマ加算(両者デジタル現像処理)

やはりほとんど見分けがつきませんね♪

★というわけで今回の「検証ごっこ」の結論は

ゲインと露出の両方を変えても、総露光時間が同じなら、ほぼ同等の写りとなる。

ということが分かりました。


撮影が進まないので、まだ「検証ごっこ」続きます♪








by supernova1987a | 2017-01-12 23:33 | 天体写真 | Comments(4)

月夜の楽しみ?検証ごっこ①

元旦以来のお休みが取れましたが、すでにお月様が明るくなってまして、新作が撮れそうにありません。
こんな憂鬱な夜は・・・そう、「検証ごっこ」して遊ぶに限ります。

★その前に、お断りが・・・

先日、「長時間露光+少数枚コンポ」VS「短時間+多数枚コンポ」の検証ごっこを行いましたが、訂正があります。
当初「ゲイン400の8秒露光とゲイン400の0.5秒露光を比較した」と書いていましたが、どうも輝度レベルが上手く合わないので、よくよくデータを見てみたら、「ゲイン400+8秒露光」だと思っていた画像が、なんと「ゲイン200+16秒露光」でした。
ああ、これはもう、どうしようも無いミスですね。
そう言えば、途中でVMC260Lの副鏡が結露して撮像を中断したときにゲイン400+8秒露光の画像を撮り直すのを忘れていたっぽいです。久しぶりの結露で、ちとテンパっていたようです。全く面目ない・・・。

・・・というわけで仕切り直しです。

★こんな比較データは面白いと思いませんか?

<対決①>
 ゲイン400+4秒露光+1枚撮り
  VS
 ゲイン400+0.5秒露光+レベル調整で輝度8倍
  VS
 ゲイン400+0.5秒露光+8枚加算コンポジット

<対決②>
 ゲイン200+16秒露光+1枚撮り
  VS
 ゲイン400+2秒露光+1枚撮り
  VS
 ゲイン400+2秒露光+8枚加算平均コンポジット

・・・というわけで、やってみた。


★対決①:ゲインが同じ場合の比較

VMC260L+レデューサ+LPS-P2フィルタにZWOの冷却CMOSモノクロカメラASI1600MM-COOLを装着してM42を撮影し
 A:ゲイン400+4秒露光
 B:ゲイン400+0.5秒露光
を比較してみます。(冷却温度は全て-10度です。ダーク・フラット補正は加えていません。)
ちなみに今回画像処理して気づいたのですが、短時間露光のコマにステライメージのホット&クールピクセル除去を掛けてしまうと、低輝度光子の到来頻度揺らぎ(フラクチェーション)に伴うショットノイズ(単なる揺らぎなので消すべきでは無い)ではなくダークノイズ(消すべき)として認識されることによって、正しいシグナルが消される傾向にある「らしい」ことが分かったので、今回はABともにホット&クール除去を行いませんでした。(この点はベイヤー構造からホットピクセルの弁別が可能なカラーカメラと異なり、モノクロカメラの弱点かも知れません)

f0346040_22412758.jpg
  左:ゲイン400+4秒露光 右:ゲイン400+0.5秒露光

正真正銘の「撮って出し」なので、当然、明るさには大きな差がありますね。
では、0.5秒露光の画像をレベル調整して、輝度値を8倍にしてみます。

f0346040_22441632.jpg
  左:ゲイン400+4秒露光 右:ゲイン400+0.5秒露光(輝度値8倍にレベル調整)

ああ、良い感じに明るさが揃いました。さすがデジタルですね。低照度相反則不軌特性のあるフィルムではこうはいきません。フィルムなら4秒露光の方が暗くなります。 ただし、むりやりレベルを上げたので当然画面はザラザラです。

では次に、レベル調整する前の0.5秒露光の画像を8コマ分加算コンポジットしてみます。(平均では無く単純加算です)

f0346040_22502818.jpg
  左:ゲイン400+4秒露光 右:ゲイン400+0.5秒露光×8コマ加算

おお、まるでそっくりですね♪
前回の仮説(長時間露光しても、短時間露光を加算処理しても、結果は同等)が「ある程度」検証できたと思います。

では次に、ゲインを変えた場合について見てみます。

・・・が、その前に・・・

★ゲインの基本的な考え方

デジカメのISOに相当するのが冷却CMOSカメラのゲイン設定ではあるのですが、少々特殊でして(私が勘違いしていないのであれば)「ゲインを70増加するごとに感度が2倍になっていく」と把握しています。
たとえば、ゲイン200をゲイン270にすると感度が倍になって露出時間が半分で済み、ゲイン200をゲイン340にすると感度が4倍になって露出時間が1/4で済む、などという捉え方ですね。

本当にそれに近いことが起こっているのか試してみます。

ゲイン200をゲイン400に変えた場合、
 2^((400-200)/70) = 7.246
(※^は累乗を表したつもり)
となりますので、理論上は感度が約7.25倍になる計算になります。


shiroさんからミスのご指摘をいただきましたので以下、訂正します。


デジカメのISOに相当するのが冷却CMOSカメラのゲイン設定ではあるのですが、少々特殊でして「ゲインを60増加するごとに感度が2倍」になっていきます。
たとえば、ゲイン200をゲイン260にすると感度が倍になって露出時間が半分で済み、ゲイン200をゲイン320にすると感度が4倍になって露出時間が1/4で済む、などという捉え方ですね。

本当にそれに近いことが起こっているのか試してみます。

ゲイン200をゲイン400に変えた場合、
 2^((400-200)/60) = 10
(※^は累乗を表したつもり)
となりますので、理論上は感度が10倍になる計算になります。

さて、手持ちのデータでは
ゲイン200+16秒露光とゲイン400+2秒露光がその比率に近いので比較してみましょう。
f0346040_22553276.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+2秒露光

少し右の方が明るいですが、大差ありません。(本当は右の方が少し暗くなるはずなのですが・・・ね)


★対決②:ゲインを変えた場合の比較

では、本題の
ゲイン200+16秒露光 VS ゲイン400+2秒露光×8枚コンポジット
を比べてみます。

f0346040_23020817.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+2秒露光×8コマ加算平均コンポジット(輝度値が揃っているので平均処理です)

ほとんど見分けがつかなくなりました。
よく見ると、シンチレーションやガイドミスの影響を受けない分、高ゲイン+短時間露光の方が恒星が明るく、全体的な解像度も勝っていますね。

では次に、デジタル現像で暗部を炙り出しつつトラペジウムがサチらないように調整してみます。

f0346040_23052656.jpg
  左:ゲイン200+16秒露光 右:ゲイン400+2秒露光×8コマ加算平均コンポジット 両者ともデジタル現像処理

いかがでしょう??
完全に右の方が解像度が高くなりましたね♪

・・・といいつつ、よく見ると左のスパイダーによる回折像が不自然なので、結露が取り切れてなかったり、ヒーターのコードによる回折の影響があるかもです。
なお、右の方がノイズが少なそうに見えるのは、恐らくノータッチガイドによる「天然ディザリング」効果に起因するものだと思います。
きちんと精密オートガイドしたり真面目にダーク減算処理した場合は、異なる結果になるかと。


★という訳で、今回の「検証ごっこ」の結論は

①同じゲインで比較した場合、
 長時間露光の1枚撮りと短時間露光の加算コンポジットは、
 総露光時間が同じなら、ほぼ同等の結果となる。

②ゲインを変えて比較した場合、
 低ゲイン長時間露光と高ゲイン短時間露光の加算平均コンポジットは、
 総露光時間が同じなら、ほぼ同等の結果となる。

※強いて言えば、①②の双方とも短時間露光+多数枚の方が解像度は高くなる(かも)

といったところでしょうか。



<お約束♪>

あくまで「検証ごっこ」という名の「遊び」です。
また、今回のデータはM42の中心付近という明るい対象を用いた比較にすぎません。
貴重な撮影時間を無駄にしないためにも、結果の判断は皆様の経験と主観を信ずべきかと思います。


by supernova1987a | 2017-01-10 23:21 | 天体写真 | Comments(8)

モノクロCMOSの解像度は活かせないの?

★実はガッカリしてたり

分かってはいたんですがねぇ、日本のシーイングの悪さは。

ASI1600のカラー版MCとモノクロ版MMの解像度の差について、
先日、昼間の風景で比較した際には、圧倒的にMMの解像度が高いことが確かめられました。

f0346040_15313874.jpg
  ※左:MM 右:MC (いずれもシャープ処理なし)

ところが、いざ天体で撮影してみると そんなに差が無いんですよねぇ。
恐らくは、シンチレーションの影響が大きいのでは無いかと推測されるので、すこしゴソゴソ『考察ごっこ』してみます。


★0.5秒露光のM42の挙動は・・・

いざ撮影してみてビックリしました。トラペジウムがですね、まさに踊り狂ってるんですよ。・・・風も無いのに。
・・・で、どれくらい踊り狂っているのかを数値的に見てみることに♪

ちなみに、コンポジットの速度がVer6.5と比べて15倍以上低速なステライメージ7は個人的に好きになれないのですが、それでも非常にありがたい機能があります。
それは、基準星を指定して位置合わせをした際にサブピクセル単位での並進ズレ量を表示してくれるという機能です。

f0346040_14354276.jpg
こんな風にX座量とY座標について、どれだけ位置がずれたかを表示してくれます♪
この数値を(残念ながらコピペできない仕様なので)手作業でEXCELに打ち込むと、ズレの挙動が視覚化できます。


★0.5秒露光×24コマの挙動

VMC260L(1860mm)+ASI1600MM-COOLで撮像したM42について、上記の手法で並進ズレの様子を視覚化してみます。

f0346040_14445148.jpg
ちょっと分かり難いですが、横軸がY方向のズレで縦軸がX方向のズレです。(単位はピクセル)
ざっくり言って、横軸が赤経方向に近く、縦軸が赤緯方向に近いです。
・・・ぎゃー!
まるでランダムウオーク。ダメだこりゃ。

さて、ASI1600MMとVMC260Lの組み合わせの場合、1ピクセルの角度は約0.42秒となりますので、上記のグラフを秒角単位に変換してみると

f0346040_14484074.jpg
こんな感じになりました。
これを元に最小自乗法で回帰直線で近似して、そこからの偏差をスキャッタプロットしてみると

f0346040_14583383.jpg
システマチックな運動(今回の場合は主として極軸エラーに伴う並進運動)以外のふらつきが上記のようになると推定できます。
ちなみに横軸の方がふらつきが大きいのは主として赤道儀のピリオディックモーションの影響かと思われますが、それにしてもシンチレーションの影響が非常に大きく、たった12秒間の間にこんなに動き回られたのでは、せっかくのMMの高解像度も活かせるわけがありません
また、10~15秒露光した際に星像がボテッとしてしまうのも仕方ありませんね。なにしろ、肝心の被写体が動き回っているのですから(笑)。


★標準偏差を求めてみる

実際の撮像素子上における星像のふらつきを視覚化して、(データ数がたったの24個ですから有意性は低いですが)ばらつきの尺度として標準偏差を求めてみます。

f0346040_15221831.jpg
ざっくり言って、今回の撮影条件だとシステマチックな並進運動を排除したとしても、
 X軸方向に約±1.5ピクセル分のふらつき
 Y軸方向に約±3.0ピクセル分のふらつき
があることが分かりました。

・・・ということは、
横方向に3ピクセル、縦方向に6ピクセルにわたって星の光が分散してしまっていることになりますので、MMの解像度が活かせるわけが無い・・・・てな結論に達してしまいました。

あ~あ。

要するに、ASI1600MM-COOLの解像度を無駄にしたくないなら焦点距離はおよそ600mmが限界で、それ以上長焦点の望遠鏡を使ってもボケるだけ、てなことになっちゃいますね。(ベイヤー構造を持つMCの場合は、1200mmくらいまで焦点距離が伸ばせる?)もちろん補償光学系を使えば別でしょうが・・・。

いや、待てよ。
逆に考えると、MCで1200mmで撮影したのとMMで600mmで撮影したのが、ほぼ同じ解像度ということになるなあ。

・・・BORG89ED(600mm)とか、カプリ102ED(700mm)とか、R200SS(800mm)とか、結構相性が良いのかも・・・・。
あるいはVMCにレデューサ2枚重ねとか、何らかの形での縮小光学系を構築するとかも考える必要があるかも、です。


(注)春から夏にかけての高シーイング時には別の結果が出ると思います。
また、最大エントロピー法などの画像復元処理によって解像度はアップできるとは思いますが、果たしてMCとMMの差が出るほどかというと・・・・。


<お約束>
あぷらなーとは統計処理に関しては素人なので、色々と勘違いしている可能性があります。
あくまで『検証ごっこ』という名のお遊びなので、結果は鵜呑みにしないでください♪



by supernova1987a | 2017-01-02 23:10 | 天体写真 | Comments(13)


タグ
最新の記事
記事ランキング
ファン
ブログジャンル
画像一覧
外部リンク