あぷらなーと


あぷらなーとの写真ブログ
by あぷらなーと
S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
あぷらなーと
「自然写真大好き」
HNあぷらなーと が

いろんな写真ネタを
のんびり語ります。

気合い入れすぎると
続かないので、
「ぼちぼち」いきます。

生息地:香川・徳島
カテゴリ
最新のコメント
> kem2017さん ..
by supernova1987a at 00:20
ネオジムと聞いて、プロメ..
by kem2017 at 16:44
> にゃあさん 電..
by supernova1987a at 23:49
> オヤジさん お..
by supernova1987a at 23:45
> kem2017さん ..
by supernova1987a at 23:43
回転させるのにHDD使う..
by にゃあ at 11:02
3600rpm!!! ..
by オヤジ at 08:52
レベル6は、年寄りの冷水..
by kem2017 at 08:08
> kem2017さん ..
by supernova1987a at 07:09
HDDって分解しちゃいけ..
by kem2017 at 04:15
以前の記事
お気に入りブログ

『光害チョッパー』製作プロジェクト その③

★PLフィルタを使った『光害チョッパー』

まず、簡易分光器を使って測定した結果、自宅周辺の光害は蛍光灯などの輝線スペクトルが支配的だということが判明しました。
次にグローバルシャッターCMOSカメラを使って高速動画撮影した結果、自宅周辺の光害は蛍光灯の点滅と同期している可能性が出てきました。

そして、蛍光灯などの明滅に同期するシャッターを考案・・・・

PLフィルタを2枚用意して、そのうちの1枚を高速回転することで、光害のフリッカー現象に同期した撮影ができそうと推測。

・・・と、ここまでは順調だったのですが・・・


★問題は「回転方法」だなぁ・・・

いや、白状すると、もっと簡単にいくはずだったんですよぉ。
当初、PLフィルタを使った回転シャッターの開閉周期が1回転につき2周期あることを忘れていて、
「なんだ、7200rpm でバッチシじゃないか!」
と喜んだのもつかの間、本当は3600rpmが必要であることが発覚・・・・という、お粗末な結果に。

え?なんで7200rpmなら楽勝だったのかって?
そりゃもう、「7200rpm」の高速モーターと言えば、コレでしょう!
f0346040_23442719.jpg
はい。ぶっ壊れたハードディスクです。
大抵のHDDは7200rpmこれを分解してシャッター回転機に仕立て上げようという作戦です。
このときばかりは、「西日本に生まれて良かった~」(電源が60Hz)と小躍りしたものですが・・・・

PLフィルタは180度回転で位相が一周するので、必要な回転数は7200じゃなくて3600rpmじゃないか!

うえーん。
手持ちの秘蔵ジャンクボックスをかき回したものの
SATAはもちろんのこと、IDEやSCSI(笑)に至るまで、回転数が
4200rpmと5400rpmと7200rpmのHDDばっかり!

・・・・ここに来て『光害チョッパー』プロジェクト座礁か?!


★なにはともあれ、分解です

と、まあ色々と紆余曲折があったのですが、思うところあって「とりあえず分解!」行ってみます♪
f0346040_23571716.jpg
学生時代に異物が混入して故障したHDDを分解修理(ホントはそんなことやっちゃダメ)したことがあったので、サクサクと開腹♪
f0346040_23593132.jpg
電源ケーブルのみを接続して、開いた状態でもディスクが回転することを確認。
f0346040_00002635.jpg
おおー出ましたね。ヘッドを動かすムービングコイルとネオジム磁石♪
あ、このネオジム磁石は『別のプロジェクト』で使用予定だったので、早々に外して確保します。
(あれですよ。突発的ホットピクセルの原因究明のため、自然放射線の荷電粒子の弁別云々に用いる予定でして・・・♪)

f0346040_00044168.jpg
うーん。いつ見てもHDDの表面って魅惑的ですなぁ。
吸い込まれそうな魔力を感じます。
f0346040_00053653.jpg
・・・と、ここで問題発生!
ヘッドを撤去した状態で通電すると、(はじめは全速で回転を始めるのですが)20秒程度で勝手にモーターが停止するじゃないか!

ああ、なるほどね。ヘッドが壊れた場合にディスクを保護するため、安全回路が仕込んであるのかー。

f0346040_00084730.jpg
コントロール基板を外すと、ボディに貫通穴が空いていて、そこにヘッドに接続されたICチップが刺さってました。
たぶん、この辺が安全回路なのでしょうかね?

仕方なく取り外したヘッドの配線のみを復元するとディスクは無限回転を取り戻しました。


★どうせ7200rpmじゃダメだし

こ、こうなったら、スピンドルモーターそのものに、信号入れて制御するか?
うーん。
arduinoあたりを転用すればPWM制御コントローラ作れそうな気はするんだけど・・・・。

ま、この辺の『お楽しみ』は あぷらなーとの右肩修理入院が明けてからですね。

PS
明日は入院+手術の打ち合わせ(もう、順番待ちで1ヶ月半もかかったぜ・・・)
本日の部活指導は左半身だけを使って、右半身の動きと左半身の動きを交互に見せるというロボットのような所作。
いやー参った参った。(もうね、脳みそこんがらがっちゃう)

ま、手術しても(部活コーチへの)完全復帰はムリかなぁ。
格闘技系の動きと違い応援演舞の動きって『人間工学を無視した動作』なので、どうしてもオッサンになると負担が大きいものなぁ。
肘を曲げずに両腕全速旋回とか、腕が伸びきった状態で手刀の急停止とか・・・・。そりゃスジも切れるわなー。
現役時代には『残像の○○』とか『疾風の○○』の名をほしいままにして、コーチに就任してからも『レジェンド』って呼ばれてたけど、そろそろ引退か・・・・。


# by supernova1987a | 2018-04-24 00:35 | 機材考案 | Comments(10)

『光害チョッパー』制作プロジェクト:その②

★実を言うと・・・

あぷらなーとは、結構小心者なので、
「ブログで大きな事を公言して、失敗したらどうしよう・・・」
などと、心配することも多いわけですねぇ。

だから白状すると、「250円霧箱制作記」の時も、仮実験が成功してから執筆開始
実は、その前に
「PET樹脂を使った積層型シンチレータ作ってミューオンの軌跡を撮る」ことに挑戦して玉砕したり、
アクリル板で製作した霧箱がドライアイス冷却による温度差に耐えられず一瞬で大破したり
その他もろもろの『大失敗実験ごっこ』があったことは、ほとんどヤミに葬ってます
書くとしても、別案が成功した後・・・・・・我ながらズルいなあ(笑)。


★今回の遊びは、リアルタイム連載です

『光害チョッパー』プロジェクト考えれば考えるほど失敗の公算が高いのですが、今回は『あほネタ』となることを覚悟の上でのお遊びなので、まだ結果が見えないうちから、リアルタイム連載にチャレンジします。(だから、期待しちゃダメ・・・・)
ええ、失敗しても笑いが取れたら良いか、という体当たり企画です♪


★『光害が照明と同期して点滅している』のを前提に
さて、高価な機材(位相コントロール機能付き液晶シャッターとか)を使わずに、点滅する光害を軽減して天体写真を撮るために最初に思いつくのは『プロペラ状の回転シャッター』でしょうねぇ。
f0346040_02420058.jpg
F:光害の点滅周波数(1秒に何回点滅するか)
N:回転シャッターの羽の数
X:回転シャッターの(1秒あたりの)回転数

とすると、

F=NX

が成り立つように調整すれば、成功しそうです。
ちょうど光害が明るいときに羽でカメラを隠して、光害が暗くなるタイミングで羽のスキマがカメラを通過するという発想です。
これなら安上がりで、まさに光害を斬って捨てる『光害チョッパー』が完成しそう・・・
・・・ですが・・・

★いや、ちょっと待て

この案は数年前に思いつきましたが、試作することもなく、速攻で却下したんですよー。
却下した理由は主に2つ。

 ①プロペラ式回転シャッターで点滅光源を撮影すると、光量ムラが生じる。
 ②(センサーなど高度な部品を使わないと)回転位相を調整する手段が思いつかない。

では、①について思考実験してみます。
f0346040_02544167.jpg
上の概念図のように、どうしてもシャッターの羽が通過するタイムラグで、撮像素子の部分によって光害のON-OFFに同期できない箇所が出てしまいます。
※光学的には、光学絞りの位置に配置することでこの現象は回避できます。ただし実際には色々と厄介そうです。

望遠鏡のようにレンズ構成が単純な場合は対物レンズの直前に配置すればいけそうな気はしますが、問題は②です。
プロペラの羽が通過するタイミングと光源の明滅タイミングを同期させる仕組み(位相調整)が、どうしても思いつかないのです。
この②の回避法は後ほど詳しく書くとして、まずは改善案をお見せします。


★プロペラのどこをとっても「位相が同じ」になるには

光量ムラや位相調整の困難が生じる原因は、プロペラ型の回転シャッターの構造にあります。
場所によって『羽の角度が異なる』のが諸悪の根源だと判断しました。
要するに12時方向の羽は「位相が0』なのに、3時方向の羽は『位相がπ(90度)』といった具合で、放射状にシャッターを配置すること自体が問題を生んでいます。

そこで!!

f0346040_03060505.jpg
放射状ではなく、スリット状のシャッターを2枚組み合わせる方法を考案しました。
上の概念図のようにレンズの前に置く第①スリットはグルグル回転しますが、各スリットは平行なため、どこをとっても位相(傾き)が同じです。
ただし、このままでは、全体的に常に光量が1/2になるだけで点滅に同期できませんので、第①スリットとカメラとの間に第②スリットを配置します。
このスリットは、第①スリットと同じ構造(スリット幅など)ですが、回転せず固定されています。

f0346040_03115661.jpg
すると、上図のように第①スリットが1/4回転するごとに第②スリットのスキマを完全にふさぐことになるので、回転数の2倍の周波数でシャッターのON-OFFが繰り返されることになります。

それになにより、この手法が(我ながら)面白いのは、第②スリットの固定角度を手動で調整することがシャッター全体の動作位相の微調整になり得る点です。

例えば、ですよー。
プロペラ式回転シャッターの通過タイミングを1/1000秒のオーダーで調整するのは神業(と言うか人力ではムリ)ですが、
二重スリット式シャッターなら第①スリットの回転数が毎秒100回転の場合、360度の角度エラーが1/100秒のタイミングエラーに相当します。
ということは、360度÷10=36度 だけ第2スリットの固定位置を回転させれば、1/1000秒の調整が可能となるのです。

言い換えると、仮に第2スリットの角度設定誤差が3度あったとしても、シャッタータイミングの同期精度は実に1万8000分の1秒まで追い込める計算になりますね♪

実際には、格子が太いとそれ自体が格子状のムラを生みそうなので、スリットを無限小に細くする努力は必要そうです。


★無限に細いスリットって、根本的にダメなんじゃ?

ここまで来て、鋭い読者の方は「そんなんダメだ」と思ったかもしれません。
・・・だって・・・極細のスリットって一種の『回折格子』なので、天体が写らずにスペクトルが写っちゃうんじゃ?・・・(笑)

でもね!
身近なところにあるんですよ!
回折が起こらない『無限小のスリット』がっ!!

それは・・・

ででん!!
f0346040_03522730.jpg
PL(偏光)フィルターだっ!

これに・・・

f0346040_03540697.jpg
安物偏光板を組み合わせると・・・

f0346040_03552475.jpg
「平行ニコル」でシャッターOPEN!
f0346040_03570720.jpg
「直交ニコル」でシャッターCLOSE!

※偏光板が通常の偏光仕様のため、デジカメ時代の円偏光フィルタ(サーキュラーPL)ではなくて
フィルム時代の偏光フィルタ(ノーマルPL)を用いる必要があります。

ね?
なんだか実現しそうな気配がしてきませんか?

あとは、いかにして偏光板を高速回転させるかですが、そのための材料は秘蔵の『ガラクタボックス』から発掘済みなんですねー。


★★★以下つづきます★★★

# by supernova1987a | 2018-04-17 05:58 | 機材考案 | Comments(6)

『光害チョッパー』制作プロジェクト始動♪

★数年前から温めていたアイディア

自称『天邪鬼』・他称『ど変態』あぷらなーとは、『妙ちくりんな』アイディアを思いつくことが多いのですが、いざアイディアを実行に移すとなると時間がかかるものですねぇ。

それでも、ここ1~2年は、これまで「あたためていたアイディア」が色々と実現できていて嬉しい限り。
・比較明コンポジットの軌跡の途切れを解消する『イーブンオッド法』
・L-RGB同時露光を実現する『ビームスプリッタシステム』
・モノクロCMOSカメラのクールピクセルを軽減する『クールファイル補正法』
・複数の輝線が混合している領域を鮮やかに写す『リバースパレット法』
・250円で宇宙線などの自然放射線が目視できる拡散霧箱

・・・そしてついに!
『大物』(難敵)と向き合う時がやってきました。

いやー、学生時代から落雷時にパチパチと明滅する空を見る度に妄想してたんですよねぇ。

「光害は大気(中の塵など)に地上の光が反射(や散乱)してるもの。・・・とすれば、夜空がフリッカー現象起こしてるかも??」

もしそうなら(フィルターワークによる)「波長成分の弁別」以外にも『時間成分の弁別』で光害を軽減できるのではないか?
という訳です。


★フリッカー現象を正確に捉えるのは意外に困難

フィルムカメラ時代から室内を撮影する際に縞状の色ムラを生じることでアマチュアカメラマンを悩ませてきた「フリッカー現象」
蛍光灯などを交流電源下で点灯すると、電源の位相変化に伴って点滅するのが原因です。
ただし、よく考えてみると『シマ状』にムラが出るのは奇妙なことです。
実はこれ、光源にムラがあるんじゃなくて、カメラのシャッターにも問題があるんですね。

フィルム時代のカメラなら、フォーカルプレーンシャッターで高速シャッターを切る時に幕速が追いつかないので、スリット状のスキマを走行させることで「見かけ上」高速にシャッターが切れるように見せかけています。

また、近年の主流であるCMOSカメラの大半は、電子シャッターとして「ローリングシャッター」が実装されていますが、これも撮像素子全体を一気に露光するのではなく、1列ずつ順次露光する仕様になっています。ちょうどスキャナーのヘッドが動いていくイメージですね。

これらのカメラで高速移動している物体を撮影するとグニャリと曲がって写る「コンニャク現象」が有名ですが、これと似たような現象がフリッカーを撮影したときにも起こっています。ローリングシャッターは、画素列ごとに撮影タイミングがズレているので、蛍光灯が光っているときに作動する列と、蛍光灯が消えているときに作動する列が生じてしまうのです。その結果、シマシマ状のムラが写ってしまうわけで、別にフリッカー現象自体がシマシマになっているわけではありません。フリッカー現象自体はあくまで「画面全体の明滅」です。

★ASI174MC-COOLの最大の長所は

ZWOの冷却CMOSカメラASI174MC-COOLは、アンプノイズ(アンプグロー)やライン状のノイズなどが盛大に出るジャジャ馬ですが、他のカメラにはない機能を有しています。それが、全画素を同時に露光できる「グローバルシャッター」です。
ASI174MC-COOLは、このグローバルシャッターのおかけで、ASI1600などと異なりコンニャク現象が起きません。

という訳で、以前ミルククラウンの高速撮影を試みた際には、ASI174MC-COOLが大活躍しました。

さて、今回は、『夜空のフリッカー現象』が実在するか確かめることに挑戦してみます。


★街灯のフリッカー現象を捉える装備

夜空がフリッカー現象を起こしているかどうかを確かめる前に、そもそも、町中の街灯が『同時に』点滅しているのか?
を確かめるのが先決ですね。むろん、街灯の仕様(水銀灯?蛍光灯?LED?)によって点滅タイミングが異なるのは予想できますが、同じ仕様の街灯なら同時に点滅しているのかどうか見てみようというわけです。

実は数年前に試みたことがあるのですが、その際はローリングシャッター仕様のデジカメを使ったので、画面内の位置によってタイムラグがあったので確かめられませんでした。

そこで・・・

ででん!
f0346040_05315977.jpg
ASI174MC-COOL「街灯フリッカー調査装備仕様」出撃♪
ほぼ1インチフォーマットなので、20mmF1.8 レンズを装着すると、だいたい標準レンズくらいの画角になります。
適宜ROI(クロップ)を併用して8bitRAWのSER動画で撮影すると、1秒間に500コマ以上の超高速連射が可能です。


★LED街灯のフリッカー

まずは、近所のLED街灯のフリッカーを580FPSのハイスピード動画で捉えて、スロー再生してみます。

f0346040_05472493.gif
おおー、ハッキリと点滅してますなー。
正確な計算をしたわけではありませんが、1秒間に120回の周期で点滅しているようです。

次に、遠くのLED照明を撮影してみます。
f0346040_05530879.gif
やはり1秒間に120回の周期で点滅しています。

さて、面白いのはここからです。

f0346040_05542000.gif
上記画像の右端は近所のLED街灯、左上隅の光群が遠景のLED照明です。

おおっ!
同時に点滅しているではないか!
よし、やる気が出てきた♪
※見づらいですが画像右の上方にも遠方のLED照明が同じタイミングで明滅しているのが分かります。


★蛍光灯照明のフリッカー

さて、次に近所の蛍光灯照明のフリッカーを観察してみます。
なぜLEDから蛍光灯に話を移すかというと・・・

先日、回折格子を用いた自作『なんちゃって分光器』で夜空を撮影してみた結果、あぷらなーとの自宅周辺の光害は、LED照明よりも蛍光灯(など)の影響が大であることが判明したからです。


残念なことに、点滅タイミングはLED街灯とは異なっていました。
f0346040_06042097.gif
※ちなみに、ご覧の通りシマシマ状ではなく全体が同時に明滅していることが分かりますね。


★さて、いよいよ核心に迫ってみます♪

自宅周辺の(光害の主要因であることが判明した)蛍光灯系の明滅と、実際の夜空の光害が『同期』しているのかどうかを見るため、次のような解析を行いました。

①1/1000secの高速シャッターで蛍光灯と夜空を同時に露光する。
②仕様上、1秒間あたりの撮像コマ数は正確に設定できないので(揺らぎはでるが)可能な限り高速に連写する。
③撮影したSER動画をSerPlayerで現像し、TIFF出力する。
④TIFFファイルを目視でチェックし、蛍光灯が明滅のピーク(最も明るい)とボトム(最も暗い)であるコマを手動で弁別する。
⑤両者を別々にコンポジットし、夜空の輝度分布を比較する。

f0346040_06154726.jpg
※左:蛍光灯明度が最大の時 右:蛍光灯明度が最小の時 (いずれも画面右が天頂方向です)

輝度グラフを重ねて比較すると・・・

ででん!!
f0346040_06174864.jpg
 ※赤:蛍光灯明度最大時 青:蛍光灯明度最小値

左の大きな山は、蛍光灯が直接照らしている建物の輝度を拾ったものですが、右側に伸びるグラフは夜空の明るさを見たものです。
劇的な差とは言えないまでも、十分に有意な差が出たと思いませんか??

というわけで、

今回の『実験ごっこ』の暫定的結論は:
(少なくとも、あぷらなーと自宅周辺の)
光害は蛍光灯と同期して点滅しているっ!!

さあ、いよいよ画期的変態アイテム『光害チョッパー』の制作に入るとしますか!


★★★お約束★★★
<今回の検証ごっこについて>
①蛍光灯と同期している光害は、自宅のごく近傍のみかも知れません
②輝度グラフで拾った差異がゴースト・ハレーションに起因する可能性も捨てきれません
③コンポジットした枚数は高々30枚程度ですが、手作業ではこの辺が(忍耐の)限界でした。

<「俺も測定してみよう」という酔狂な方へ>
①街灯の明滅が写っても、それが正しい周期とは限りません
②たいていは『何周期かに1回』うまくカメラと同期しただけですので注意が必要です
 例:1秒に5回点滅する光源を毎秒2コマ連写のカメラで撮影すると、原理上1秒に1回点滅しているように写ります
③シャッタースピードは極力短くしておかないと、同じFPSでも明滅は写りません
 ※すくなくとも1/250sec、できれば1/1000secの高速シャッターが望ましいです。
 ※これは残光の影響を避けるための工夫です
④高速連写が不可能な場合、②を逆手に取ることにより点滅周期を推定できます。
 ※バーニア(ノギス)の原理と同じです。(モアレの様子から素子間隔が推定できるのとも似てますね)

<『光害チョッパー』について>
①正確にインターバルを制御できる装置があればライブスタックで事足りますが、現実にはムリそうです。
②正確に位相操作できる液晶シャッターがあれば、それをカメラの前にセットするだけで良さそうですが、あまりに高価です。
③(流星撮影などに用いる)回転シャッターはまさに『ローリングシャッター』なので成功しないと思います。
④『軍拡終了宣言』した身なので、手持ちのパーツ以外の出費は「2000円以内」での開発を目論んでいます。
⑤『光害チョッパー』は、単にあぷらなーとの造語です(最近、こんなのばっかり・・・汗)
⑥たぶん光害カットフィルタほどの効果は出ないと思いますので、期待は禁物です。
⑦次回記事から制作に入りますが、失敗したら、元気よく笑い飛ばしてください(これ、重要)。


# by supernova1987a | 2018-04-16 06:42 | 機材 | Comments(6)


タグ
最新の記事
記事ランキング
ファン
ブログジャンル
画像一覧
外部リンク